Well-Structured Graph Transformation Systems

Barbara König

Universität Duisburg-Essen, Germany

Joint work with Jan Stückrath and Salil Joshi

Context

Our current research on verification of graph transformation systems:

- Graph specification languages and graph automata (Christoph Blume & Dennis Nolte & Sebastian Küpper)
- Termination of graph transformation systems (Sander Bruggink & Hans Zantema, Eindhoven)
- Backward analysis for well-structured graph transformation systems (Jan Stückrath)

Motivation

Our aim in this talk

Given a graph transformation system with an initial graph G_0 , find a procedure for verifying whether a given graph G can be "covered", starting from G_0 .

Our toolbox

Well-structured transition systems

the state-of-the-art method for obtaining decidability results for infinite-state systems

• Graph theory

especially: graph minor theory and well-quasi orders on graphs

• Graph transformation theory SPO, pushouts, ...

[CAV '08] [CONCUR '14]

Overview

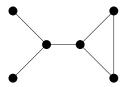
- 1 Graph Minor Theory and Well-Quasi Orders on Graphs
- 2 Well-Structured Transition Systems (WSTS)
- **3** GTS as WSTS!
- 4 Backward Analysis
- 5 Implementation

- Graph minor theory by Robertson and Seymour
- Long series of papers (Graph minors I-XXIII)
- Deep graph-theoretical results with applications in computer science (mainly efficient algorithms, complexity theory)
- What about applications in verification?

Minor of a graph

The minors of a graph G can be obtained by (iteratively)

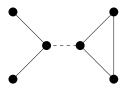
- Deleting edges.
- Deleting isolated nodes.
- Contracting edges.



Minor of a graph

The minors of a graph G can be obtained by (iteratively)

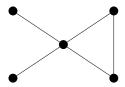
- Deleting edges.
- Deleting isolated nodes.
- Contracting edges.



Minor of a graph

The minors of a graph G can be obtained by (iteratively)

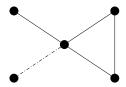
- Deleting edges.
- Deleting isolated nodes.
- Contracting edges.



Minor of a graph

The minors of a graph G can be obtained by (iteratively)

- Deleting edges.
- Deleting isolated nodes.
- Contracting edges.



Minor of a graph

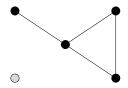
The minors of a graph G can be obtained by (iteratively)

- Deleting edges.
- Deleting isolated nodes.
- Contracting edges.

Minor of a graph

The minors of a graph G can be obtained by (iteratively)

- Deleting edges.
- Deleting isolated nodes.
- Contracting edges.



Minor of a graph

The minors of a graph G can be obtained by (iteratively)

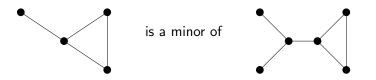
- Deleting edges.
- Deleting isolated nodes.
- Contracting edges.



Minor of a graph

The minors of a graph G can be obtained by (iteratively)

- Deleting edges.
- Deleting isolated nodes.
- Contracting edges.



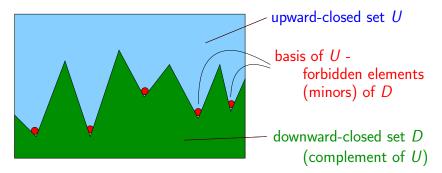
Graph minor theorem (Robertson & Seymour)

In every infinite sequence $G_0, G_1, G_2, G_3, \ldots$ there exist indices i < j such that G_i is a minor of G_j .

In other words: the minor ordering \leq is a well-quasi-order (wqo).

Consequences:

- every upward-closed set of graphs has a finite basis (i.e., a finite set of minimal elements)
- every downward-closed set of graphs can be characterized by finitely many forbidden minors.

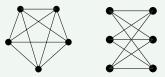


Downward-closed sets of graphs:

- Graphs that are disjoint unions of paths
- Forests
- Planar graphs
- Graphs that can be embedded in a torus
- . . .

Kuratowski's theorem

A graph is planar if and only if it does not contain the K_5 and the $K_{3,3}$ as a minor.

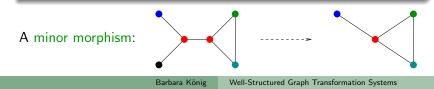


What about labelled graphs, directed graphs, hypergraphs? \rightsquigarrow The graph minor theorem holds even for labelled hypergraphs! (If an edge is contracted, its incident nodes are arbitrarily partitioned and merged.)

Minor morphisms

 $H \leq G$ iff there exists a minor morphism $G \mapsto H$, that is

- there is a partial graph morphism $G \rightharpoonup H$,
- which is surjective, injective on edges and
- whenever two nodes v, w of G are mapped to z in H, there exists an (undirected) path between v, w which is contracted.



10

There are other interesting well-quasi-orders on restricted sets Q graphs, for instance:

set of graphs Q	well-quasi-order	
all graphs	minor ordering	
graphs with a bound on the	subgraph ordering	
longest undirected path		
graph with a bound on the	induced subgraph	
longest undirected path and	ordering	
on the number of parallel edges		

All these orders can be characterized by a class of order morphisms (analogously to minor morphisms), symbolically: \mapsto

Well-quasi-orders are also an important ingredient of well-structured transition systems (WSTS) [Finkel/Schnoebelen, Abdulla et al.]

WSTS (Well-structured transition system)

Let S be a set of states, \Rightarrow a transition relation and \leq a partial order on states. The transition system is well-structured if

- \leq is a well-quasi-order
- Whenever $s_1 \leq t_1$ and $s_1 \Rightarrow s_2$, there exists a state t_2 such that $t_1 \Rightarrow^* t_2$ and $s_2 \leq t_2$ (compatibility condition).

$$\begin{array}{ccc} t_1 \Longrightarrow^* t_2 \\ \lor & \lor \\ s_1 \Longrightarrow s_2 \end{array}$$

The prototypical example for a WSTS are Petri nets:

- States: markings
- Transition relation: firing of transitions as specified by the net
- Well-quasi-order: m₁ ≤ m₂ if m₂ covers m₁ (m₂ contains at least as many tokens in every place)

Other examples:

- Context-free string rewrite systems
- Basic process algebra
- "Lossy" systems
- Systems with home-states

Backward Reachability

Take a set $I \subseteq S$ of states and compute $Pred^*(I)$ (the set of all predecessors) as the limit of the sequence

$$I_0 = I \qquad \qquad I_{i+1} = I_i \cup Pred(I_i),$$

where *Pred* returns the direct predecessors of a set of states.

Backward Reachability and WSTS

In the case of WSTS it holds that

- If *I* is upward-closed (and hence representable by a finite basis), then *Pred*^{*}(*I*) is upward-closed.
- The sequence I_0, I_1, I_2, \ldots eventually becomes stationary, i.e., $\uparrow I_n = \uparrow I_{n+1}$ (upward closures coincide) and $Pred^*(I) = \uparrow I_n$.

Covering problem

Covering problem: Given an initial state s_0 and another state s_f . Can we reach a state s from s_0 , i.e., $s_0 \Rightarrow^* s$ such that $s \ge s_f$?

The covering problem for WSTS is decidable if

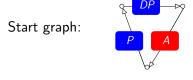
- we can effectively compute a finite basis for (the upward-closure of) Pred(1) whenever we have a finite basis for 1 and
- if the well-quasi order \leq is decidable.

Procedure: Compute $Pred^*(\uparrow \{s_f\})$ and check whether it contains s_0 .

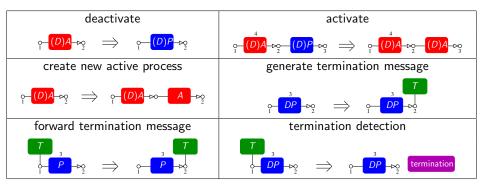
Graph Transformation Systems

Question: can we view (some) graph transformation systems (single-pushout approach) as well-structured transition systems?

• A ring consisting of active and passive processes.



- Active processes may become passive at any time.
- Active processes may activate passive processes and create new active processes.
- There is a special process (the detector *DA*, *DP*) that may generate a message for termination detection.
- This message is forwarded by passive processes and received by the (passive) detector which then declares termination.



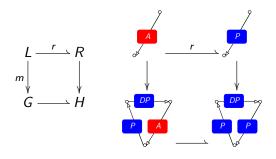
Additionally: The system is unreliable. Processes may leave the ring at any time and messages may get lost.

active process leaves	passive process leaves	
$\circ_{1} - (D)A \rightarrow \circ_{2} \implies \circ_{1,2}$	$c_1 (D) P \to c_2 \Rightarrow c_{1,2}$	
message is lost	termination flag is lost	
$\begin{array}{c} 7\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	termination	

SPO (single pushout) rewriting rules, given by partial graph morphisms from the left-hand side to the right-hand side.

Single-pushout approach

Take the pushout of the partial rule morphism $(r: L \rightarrow R)$ and the total match $(m: L \rightarrow G)$ in the category of partial graph morphisms in order to obtain the resulting graph H.



Construct H by

- deleting elements of *G* which are undefined under *r*
- creating elements which are new in *R*

It can be shown that our order morphisms (minor morphisms, etc.) are preserved by pushouts along total morphisms (important for our theory!)

Correctness

- Are the rules incorrect?
- That is, can we reach a graph where termination has been declared, but there are still active processes?
- Can we reach a graph which contains the following graph as a minor?

$$\sim D(A) \rightarrow \infty$$
 termination

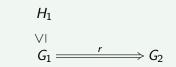
 \sim View graph transformation as a WSTS (with the minor ordering) and solve the covering problem for the graph above via backward analysis!

Graph transformation systems are in general Turing-complete \rightsquigarrow not all GTS can be well-structured

But some subclasses are WSTS with respect to the minor ordering:

- Context-free graph grammars
- GTS where the left-hand sides consist of disconnected edges
- GTS which contain edge contraction rules for every edge label ("lossy" systems)

Obtaining a WSTS by adding edge contraction rules



If G_1 is a minor of H_1 and G_1 is rewritten to G_2 ...

Obtaining a WSTS by adding edge contraction rules

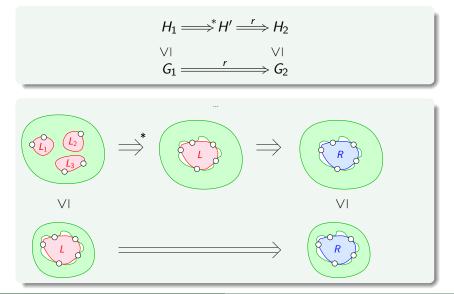
...then H_1 contains a possibly disconnected left-hand side which can be contracted via the edge contraction rules, resulting in H' and ...

Obtaining a WSTS by adding edge contraction rules

$$H_1 \Longrightarrow^* H' \stackrel{r}{\Longrightarrow} H_2$$

$$G_1 \xrightarrow{r} G_2$$

 \dots H' can be rewritten to H_2 (of which G_2 is a minor) by using the same rule as for G_1 .



What about the other orders (subgraph, induced subgraph)?

- The compatibility condition is satisfied (for arbitrary rules)
- We do not have a well-quasi-order on the set of all graphs

 Q-restricted WSTS
 - We still obtain decidability if Q is closed under reachability.
 - If the backwards analysis terminates on all graphs (no guarantee!) we still obtain correct results.
 - Otherwise we restrict the search space to Q and our method will give us one of the following two answers:

order	wqo on <i>Q</i>	Q-res. well-structured
minor ordering	all graphs	lossy systems
subgraph ordering	bounded path length	GTS without NACs
ind. subgraph	bounded path length	GTS with restricted
ordering	and edge multiplicity	NACs

Tradeoff:

- coarser order is potentially a well-quasi-order on a larger set of graphs.
- For a finer order more graph transformation systems can be well-structured.

Backward Analysis

What remains to be done in order to perform the backward analysis?

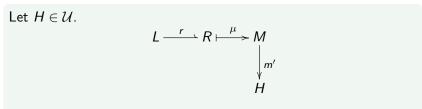
Given a finite basis F for an upward-closed set of graphs \mathcal{U} we have to compute a finite basis for (the upward-closure of) $Pred(\mathcal{U})$.

Ideas:

- Given a graph $H \in F$, apply all rules backward.
- But: *H* need not contain the full right-hand side of a rule, but it may represent other graphs that do contain the right-hand side

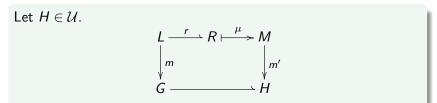
 \rightsquigarrow Instead of taking ordinary rules $r: L \rightarrow R$, take as rules $L \xrightarrow{r} R \stackrel{\mu}{\mapsto} M$, where μ is an arbitrary order morphism.

Why does this work?



Find a match of M of the right-hand side in H.

Why does this work?

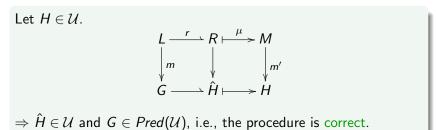


Make a backward step by applying the rule backward (find a pushout complement).

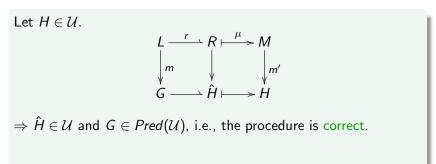
Why does this work?

This pushout splits into two pushouts (standard pushout splitting). $\rightsquigarrow G$ can be rewritten to \hat{H} and $H \leq \hat{H}$ (since order morphisms are preserved by pushouts).

Why does this work?

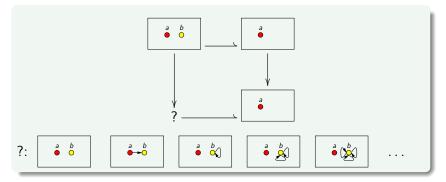


Why does this work?

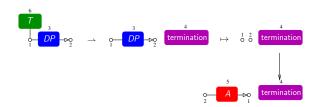


Completeness, i.e., the fact that we generate the entire basis, also holds, but is more difficult to prove.

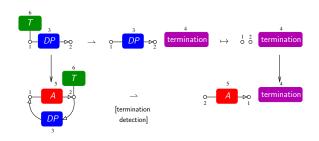
Another problem: in the category of partial morphisms, there are usually infinitely many pushout complements.



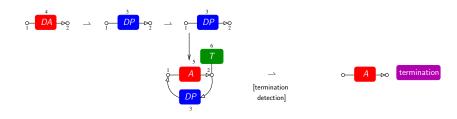
 \sim It is sufficient to compute only the minimal pushout complements with respect to the ordering. We have algorithms for this.



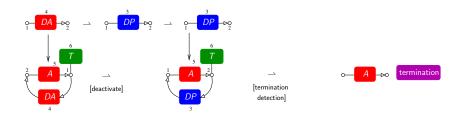
Backward analysis for the running example (minor ordering):



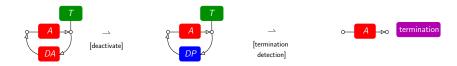
Apply rule [termination detection] backward.



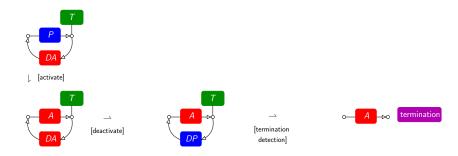
Backward analysis for the running example (minor ordering):



Apply rule [deactivate] backward.

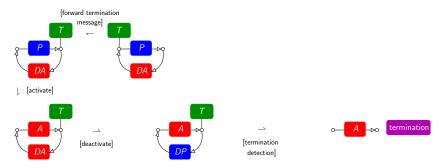


Backward analysis for the running example (minor ordering):



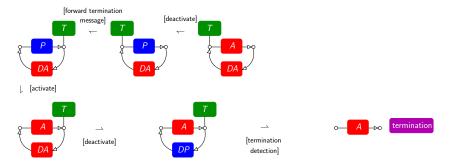
Apply rule [activate] backward.

Backward analysis for the running example (minor ordering):



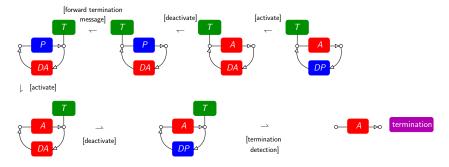
Apply rule [forward termination message] backward.

Backward analysis for the running example (minor ordering):



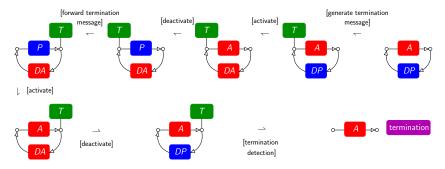
Apply rule [deactivate] backward.

Backward analysis for the running example (minor ordering):



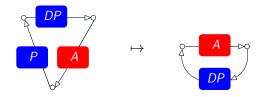
Apply rule [activate] backward.

Backward analysis for the running example (minor ordering):



Apply rule [generate termination message] backward.

The last graph in this chain is a minor of the start graph!



This means that the error graph is indeed coverable and the termination detection rules are wrong.

Reason: after a passive detector sends a termination message he has to record whether he became again active (and then passive) before receiving this message

 \rightsquigarrow Rules have to be changed accordingly. Then the property can be verified (since this a decision procedure).

Implementation

Efficiency and Implementation

- We have a prototype implementation, based on the minor ordering and on the subgraph ordering.
- Runtime results:

case study	wqo	Q	time	#EG
Leader election	minor	all	< 1s	38
Termination det. (faulty)	minor	all	3s	69
Termination det. (correct)	minor	all	< 1s	101
Rights management	subg.	all	< 1s	4
Public-private server	subg.	path ≤ 6	1s	16
Public-private server	subg.	path \leq 7	14s	18
Dining Philosophers	subg.	all	< 1s	12

Conclusion

Ongoing work

- Optimize and extend implementation, e.g. with the induced subgraph ordering.
- Universally quantified rules (allows to specify broadcasts and synchronization with neighbourhoods of arbitrary size) [Jan Stückrath, Giorgio Delzanno]

Future work

- Coarser orders preserving directed paths (topological minors?).
- Graph patterns instead of graphs [Saksena, Wibling, Jonsson]
- Forward analysis, cf. [Bansal, Koskinen, Wies, Zufferey].