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Context

Our current research on verification of graph transformation
systems:

Graph specification languages and graph automata
(Christoph Blume & Dennis Nolte & Sebastian Küpper)

Termination of graph transformation systems
(Sander Bruggink & Hans Zantema, Eindhoven)

Backward analysis for well-structured graph transformation
systems
(Jan Stückrath)
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Motivation

Our aim in this talk

Given a graph transformation system with an initial graph G0, find
a procedure for verifying whether a given graph G can be
“covered”, starting from G0.

Our toolbox

Well-structured transition systems
the state-of-the-art method for obtaining decidability results
for infinite-state systems

Graph theory
especially: graph minor theory and well-quasi orders on graphs

Graph transformation theory
SPO, pushouts, . . .

[CAV ’08] [CONCUR ’14]
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Overview

1 Graph Minor Theory and Well-Quasi Orders on Graphs

2 Well-Structured Transition Systems (WSTS)

3 GTS as WSTS!

4 Backward Analysis

5 Implementation

6 Conclusion
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Graph Minor Theory

Graph minor theory by Robertson and Seymour

Long series of papers (Graph minors I–XXIII)

Deep graph-theoretical results with applications in computer
science (mainly efficient algorithms, complexity theory)

What about applications in verification?
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Graph Minor Theory

Minor of a graph

The minors of a graph G can be obtained by (iteratively)

Deleting edges.

Deleting isolated nodes.

Contracting edges.

We write M ≤ G if M is a minor of G .
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Graph Minor Theory

Minor of a graph

The minors of a graph G can be obtained by (iteratively)

Deleting edges.

Deleting isolated nodes.

Contracting edges.

We write M ≤ G if M is a minor of G .

is a minor of
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Graph Minor Theory

Graph minor theorem (Robertson & Seymour)

In every infinite sequence G0,G1,G2,G3, . . . there exist indices
i < j such that Gi is a minor of Gj .

In other words: the minor ordering ≤ is a well-quasi-order (wqo).
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Graph Minor Theory

Consequences:

every upward-closed set of graphs has a finite basis (i.e., a
finite set of minimal elements)
every downward-closed set of graphs can be characterized by
finitely many forbidden minors.

upward-closed set U

downward-closed set D

basis of U -
forbidden elements
(minors) of D

(complement of U)
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Graph Minor Theory

Downward-closed sets of graphs:

Graphs that are disjoint unions of paths

Forests

Planar graphs

Graphs that can be embedded in a torus

. . .

Kuratowski’s theorem

A graph is planar if and only if it does not contain the K5 and the
K3,3 as a minor.
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Graph Minor Theory

What about labelled graphs, directed graphs, hypergraphs?

; The graph minor theorem holds even for labelled hypergraphs!
(If an edge is contracted, its incident nodes are arbitrarily
partitioned and merged.)

Minor morphisms

H ≤ G iff there exists a minor morphism G 7→ H, that is

there is a partial graph morphism G ⇀ H,

which is surjective, injective on edges and

whenever two nodes v ,w of G are mapped to z in H, there
exists an (undirected) path between v ,w which is contracted.

A minor morphism:

Barbara König Well-Structured Graph Transformation Systems 10
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Graph Minor Theory

There are other interesting well-quasi-orders on restricted sets Q
graphs, for instance:

set of graphs Q well-quasi-order

all graphs minor ordering

graphs with a bound on the subgraph ordering
longest undirected path

graph with a bound on the induced subgraph
longest undirected path and ordering
on the number of parallel edges

All these orders can be characterized by a class of order morphisms
(analogously to minor morphisms), symbolically: 7→

Barbara König Well-Structured Graph Transformation Systems 11
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Well-Structured Transition Systems

Well-quasi-orders are also an important ingredient of
well-structured transition systems (WSTS) [Finkel/Schnoebelen,
Abdulla et al.]

WSTS (Well-structured transition system)

Let S be a set of states, ⇒ a transition relation and ≤ a partial
order on states. The transition system is well-structured if

≤ is a well-quasi-order

Whenever s1 ≤ t1 and s1 ⇒ s2, there exists a state t2 such
that t1 ⇒∗ t2 and s2 ≤ t2 (compatibility condition).

t1
∗+3 t2

≤ ≤

s1 +3 s2
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Well-Structured Transition Systems

The prototypical example for a WSTS are Petri nets:

States: markings

Transition relation: firing of transitions as specified by the net

Well-quasi-order: m1 ≤ m2 if m2 covers m1 (m2 contains at
least as many tokens in every place)

Other examples:

Context-free string rewrite systems

Basic process algebra

“Lossy” systems

Systems with home-states
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Well-Structured Transition Systems

Backward Reachability

Take a set I ⊆ S of states and compute Pred∗(I ) (the set of all
predecessors) as the limit of the sequence

I0 = I Ii+1 = Ii ∪ Pred(Ii ),

where Pred returns the direct predecessors of a set of states.

Backward Reachability and WSTS

In the case of WSTS it holds that

If I is upward-closed (and hence representable by a finite
basis), then Pred∗(I ) is upward-closed.

The sequence I0, I1, I2, . . . eventually becomes stationary, i.e.,
↑ In = ↑ In+1 (upward closures coincide) and Pred∗(I ) = ↑ In.
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Well-Structured Transition Systems

Covering problem

Covering problem: Given an initial state s0 and another state sf .
Can we reach a state s from s0, i.e., s0 ⇒∗ s such that s ≥ sf ?

The covering problem for WSTS is decidable if

we can effectively compute a finite basis for (the
upward-closure of) Pred(I ) whenever we have a finite basis
for I and

if the well-quasi order ≤ is decidable.

Procedure: Compute Pred∗(↑{sf }) and check whether it
contains s0.

Barbara König Well-Structured Graph Transformation Systems 15
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Graph Transformation Systems

Question: can we view (some) graph transformation systems
(single-pushout approach) as well-structured transition systems?

Barbara König Well-Structured Graph Transformation Systems 16
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Running example: Termination detection

A ring consisting of active and passive processes.

Start graph:
AP

DP

Active processes may become passive at any time.

Active processes may activate passive processes and create
new active processes.

There is a special process (the detector DA, DP) that may
generate a message for termination detection.

This message is forwarded by passive processes and received
by the (passive) detector which then declares termination.

Barbara König Well-Structured Graph Transformation Systems 17
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Running example: Termination detection

deactivate activate

1 2 1 2

(D)A (D)P
21 3 21 3

4 4

(D)A (D)P (D)A (D)A

create new active process generate termination message

21 1 2

(D)A A(D)A

1 2 1 2

3 3

DP DP

T

forward termination message termination detection

1 2 1 2

3 3

P P

T T

1 2 1 2

3 3

DP DP

T

termination
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Running example: Termination detection

Additionally: The system is unreliable. Processes may leave the
ring at any time and messages may get lost.

active process leaves passive process leaves

1 2 1,2
(D)A

1 2 1,2
(D)P

message is lost termination flag is lost

1 1

T
termination

SPO (single pushout) rewriting rules, given by partial graph
morphisms from the left-hand side to the right-hand side.
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Single-pushout approach

Take the pushout of the partial rule morphism (r : L⇀ R) and the
total match (m : L→ G ) in the category of partial graph
morphisms in order to obtain the resulting graph H.

L
r �

m
��

R

��
G � H

A

r �

m
��

P

��

AP

DP

�
P P

DP

Construct H by

deleting elements of
G which are
undefined under r

creating elements
which are new in R

It can be shown that our order morphisms (minor morphisms, etc.)
are preserved by pushouts along total morphisms (important for
our theory!)
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Running example: Termination detection

Correctness

Are the rules incorrect?

That is, can we reach a graph where termination has been
declared, but there are still active processes?

Can we reach a graph which contains the following graph as a
minor?

D(A) termination

; View graph transformation as a WSTS (with the minor
ordering) and solve the covering problem for the graph above via
backward analysis!
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GTS as Well-Structured Transition Systems

Graph transformation systems are in general Turing-complete ;

not all GTS can be well-structured

But some subclasses are WSTS with respect to the minor ordering:

Context-free graph grammars

GTS where the left-hand sides consist of disconnected edges

GTS which contain edge contraction rules for every edge label
(“lossy” systems)

Barbara König Well-Structured Graph Transformation Systems 22
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GTS as Well-Structured Transition Systems

Obtaining a WSTS by adding edge contraction rules

H1

≤
G1

r +3 G2

If G1 is a minor of H1 and G1 is rewritten to G2 . . .

Barbara König Well-Structured Graph Transformation Systems 23
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GTS as Well-Structured Transition Systems

Obtaining a WSTS by adding edge contraction rules

H1
∗+3 H ′

≤
G1

r +3 G2

. . . then H1 contains a possibly disconnected left-hand side which
can be contracted via the edge contraction rules, resulting in H ′

and . . .
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GTS as Well-Structured Transition Systems

Obtaining a WSTS by adding edge contraction rules

H1
∗+3 H ′

r +3 H2

≤ ≤

G1
r +3 G2

. . .H ′ can be rewritten to H2 (of which G2 is a minor) by using the
same rule as for G1.
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GTS as Well-Structured Transition Systems

H1
∗+3 H ′

r +3 H2

≤ ≤

G1
r +3 G2

L R

RL

L1
*L2

L3

≤ ≤

...
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GTS as Well-Structured Transition Systems

What about the other orders (subgraph, induced subgraph)?

The compatibility condition is satisfied (for arbitrary rules)

We do not have a well-quasi-order on the set of all graphs
; Q-restricted WSTS
- We still obtain decidability if Q is closed under reachability.
- If the backwards analysis terminates on all graphs (no

guarantee!) we still obtain correct results.
- Otherwise we restrict the search space to Q and our method

will give us one of the following two answers:

graph G is not coverable within Q

graph G is coverable
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GTS as Well-Structured Transition Systems

order wqo on Q Q-res. well-structured

minor ordering all graphs lossy systems

subgraph
ordering

bounded path length GTS without NACs

ind. subgraph
ordering

bounded path length
and edge multiplicity

GTS with restricted
NACs

Tradeoff:

coarser order is potentially a well-quasi-order on a larger set of
graphs.

For a finer order more graph transformation systems can be
well-structured.

Barbara König Well-Structured Graph Transformation Systems 26



WQOs on Graphs WSTS GTS as WSTS! Backward Analysis Implementation Conclusion

Backward Analysis

What remains to be done in order to perform the backward
analysis?

Given a finite basis F for an upward-closed set of graphs U we have
to compute a finite basis for (the upward-closure of) Pred(U).

Ideas:

Given a graph H ∈ F , apply all rules backward.

But: H need not contain the full right-hand side of a rule, but
it may represent other graphs that do contain the right-hand
side

; Instead of taking ordinary rules r : L⇀ R, take as rules
L

r
⇀ R

µ7→ M, where µ is an arbitrary order morphism.
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Backward Analysis

Why does this work?

Let H ∈ U .

L
r � R � µ // M

m′

��
H

Find a match of M of the right-hand side in H.

Completeness, i.e., the fact that we generate the entire basis, also
holds, but is more difficult to prove.
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Backward Analysis

Why does this work?

Let H ∈ U .

L

m
��

r � R � µ // M

m′

��
G � H

Make a backward step by applying the rule backward (find a pushout
complement).

Completeness, i.e., the fact that we generate the entire basis, also
holds, but is more difficult to prove.
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Backward Analysis

Why does this work?

Let H ∈ U .

L

m
��

r � R � µ //

��

M

m′

��
G � Ĥ � // H

This pushout splits into two pushouts (standard pushout splitting).
; G can be rewritten to Ĥ and H ≤ Ĥ (since order morphisms are
preserved by pushouts).

Completeness, i.e., the fact that we generate the entire basis, also
holds, but is more difficult to prove.
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m
��
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��

M
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G � Ĥ � // H
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Backward Analysis

Another problem: in the category of partial morphisms, there are
usually infinitely many pushout complements.

a b

�

��

a

��

? �

a

?:
a b a b a b a b a b

. . .

; It is sufficient to compute only the minimal pushout
complements with respect to the ordering. We have algorithms for
this.

Barbara König Well-Structured Graph Transformation Systems 29



WQOs on Graphs WSTS GTS as WSTS! Backward Analysis Implementation Conclusion

Backward Analysis

Backward analysis for the running example (minor ordering):

A termination

Barbara König Well-Structured Graph Transformation Systems 30
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Backward Analysis

Backward analysis for the running example (minor ordering):

1 2

43 4

1 2

12

45

1 2

3

6

DP

A

⇀ 7→DP termination termination

termination

T
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Backward Analysis

Backward analysis for the running example (minor ordering):

1 2

43 4

1 2

12

45

6

3

5

21

1 2

3

6

DP

AA

DP

⇀ 7→DP

⇀

[termination

detection]

termination termination

termination

T

T

Apply rule [termination detection] backward.
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Backward Analysis

Backward analysis for the running example (minor ordering):

33

1 2 1 2 1 2

3

5

21

6

4

A

⇀⇀ DPDPDA

⇀

[termination

detection]

A

DP

termination

T
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Backward Analysis

Backward analysis for the running example (minor ordering):

33

1 2 1 2 1 2

5

3

5

212 1

6 6

4

4

A

⇀⇀ DPDPDA

A

DA

⇀

[deactivate]

⇀

[termination

detection]

A

DP

termination

T T

Apply rule [deactivate] backward.

Barbara König Well-Structured Graph Transformation Systems 30



WQOs on Graphs WSTS GTS as WSTS! Backward Analysis Implementation Conclusion

Backward Analysis

Backward analysis for the running example (minor ordering):

A⇀

[deactivate]

⇀

[termination

detection]

A

DA

A

DP

termination

T T

Barbara König Well-Structured Graph Transformation Systems 30
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Backward Analysis

Backward analysis for the running example (minor ordering):

A

⇀

DA

P

[activate]

⇀

[deactivate]

⇀

[termination

detection]

A

DA

A

DP

T

termination

T T

Apply rule [activate] backward.
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Backward Analysis

Backward analysis for the running example (minor ordering):

DA

P

A

⇀

[activate]

⇀

[deactivate]

⇀

[termination

detection]

A

DA

A

DP

DA

P

⇀

[forward termination

message]
TT

termination

T T

Apply rule [forward termination message] backward.
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Backward Analysis

Backward analysis for the running example (minor ordering):

DA

P

⇀
A

⇀

[activate]

⇀

[deactivate]

⇀

[termination

detection]

A

DA

A

DP

DA

P

[forward termination

message]

⇀

DA

A

[deactivate]

T T

termination

T T

T

Apply rule [deactivate] backward.
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Backward Analysis

Backward analysis for the running example (minor ordering):

DA

P

⇀ ⇀

DA

A

[deactivate]

A

⇀

[activate]

⇀

[deactivate]

⇀

[termination

detection]

A

DA

A

DP

DA

P

[forward termination

message]

⇀

A

[activate]

DP

T T T

termination

T T

T

Apply rule [activate] backward.
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Backward Analysis

Backward analysis for the running example (minor ordering):

DA

P

⇀ ⇀

DA

A

[deactivate]
[forward termination

message]

A

⇀

[activate]

⇀

[deactivate]

⇀

[termination

detection]

A

DA

A

DP

DA

P

⇀

A

DP

⇀

A

[activate]

DP

message]

[generate termination

T T T

termination

T T

T

Apply rule [generate termination message] backward.
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Backward Analysis

The last graph in this chain is a minor of the start graph!

AP

DP

7→ A

DP

This means that the error graph is indeed coverable and the
termination detection rules are wrong.

Reason: after a passive detector sends a termination message he
has to record whether he became again active (and then passive)
before receiving this message

; Rules have to be changed accordingly. Then the property can
be verified (since this a decision procedure).

Barbara König Well-Structured Graph Transformation Systems 31
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Implementation

Efficiency and Implementation

We have a prototype implementation, based on the minor
ordering and on the subgraph ordering.

Runtime results:

case study wqo Q time #EG

Leader election minor all < 1s 38

Termination det. (faulty) minor all 3s 69

Termination det. (correct) minor all < 1s 101

Rights management subg. all < 1s 4

Public-private server subg. path ≤ 6 1s 16

Public-private server subg. path ≤ 7 14s 18

Dining Philosophers subg. all < 1s 12
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Conclusion

Ongoing work

Optimize and extend implementation, e.g. with the induced
subgraph ordering.

Universally quantified rules (allows to specify broadcasts and
synchronization with neighbourhoods of arbitrary size) [Jan
Stückrath, Giorgio Delzanno]

Future work

Coarser orders preserving directed paths (topological minors?).

Graph patterns instead of graphs [Saksena, Wibling, Jonsson]

Forward analysis, cf. [Bansal, Koskinen, Wies, Zufferey].
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