
Project INF432 2023

1 Outline

This project consists in using a SAT-solver to automatically solve some problems
formalized in clauses. A SAT-solver is a generic tool for �nding a model of a set of
formulas : thus, your task is not to �nd speci�c resolution strategies for your problem,
but rather to translate that problem into the formalism the SAT-solver expects, and to
let it �nd a solution by itself.

You will have to choose a problem (a logic grid game such as Sudoku) and study its
rules. You will then modelize a grid of your problem using boolean variables only, and you
will translate the rules of the game into logical formulas, more speci�cally conjunctive
normal forms.

Once the problem has been modelled and validated by your TD lecturer, you will
program a software using the programming language of your choice, which takes
an instance of your problem as an input, and creates a DIMACS �le encoding that instance
as a formula in conjunctive normal form.

You will then choose a SAT-solver 1 that you will use to treat these DIMACS �les.
Finally, using the execution trace from the SAT-solver, you will display an understan-

dable solution to the instance of your problem.

Optionally, depending on how fast you've progressed in your project, you may trans-
form the model of your problem into equivalent 3-SAT clauses (you can use the algorithm
proposed in exercise 51 p. 11 of your exercise handout). If your group has been really fast,
you may program your own SAT-solver too, which will be made easier using the 3-SAT
transformation.

Note : Your grade for the project will be based on three tasks :
� writing a clear, well-structured and rigorous report ;
� delivering a well-structured, readable source code together with relevant test cases ;
� actively participating to a presentation, which will include a demo of your software.
In particular, any student that does not contribute signi�cantly to the presentation

faces the risk of receiving the grade 0 for their project.

1. For instance, MiniSat, Z3, Sattime, SAT4j, SATzilla, precosat, MXC, clasp, SApperloT, TNM,
gNovelty2+, Rsat, Picosat, Minisat, Zcha�, Jerusat, Satzoo, Limmat, Berkmin, OKSolver, ManySAT
1.1, . . .(http://www.satcompetition.org/).

1



2 Your tasks

For this project, students must work in groups (of 3 people ideally, or 4 if need be),
select one of the suggested topics or choose one and have it approved by the TD lecturer.

2.1 Deliverables

Your group will have to produce :

1. A report in which :
� you describe the problem you chose in English (rules, examples, constraints) ;
� you translate that problem into (propositional or �rst-order) logic ;
� you model the problem in conjunctive normal form (product of clauses) ;
� you explain the important points of the implementation of your programs ;
� you illustrate the use of your programs with relevant examples.

2. A collection of programs :
� an interface which takes an instance of the problem as an input, and creates a

DIMACS �le encoding that instance.
In order to make testing e�cient, your interface should be able to take its inputs
at least from a �le 2, in a format you will de�ne. Optionally, you can also let
the user enter an instance through the keyboard or a graphical interface.

� if applicable, a program which reads a DIMACS �le and returns a set of 3-SAT
clauses in DIMACS format ;

� a program which, given the trace of the SAT-solver, displays an understandable
solution to the problem ;

� if possible, a program which chains these steps together with the call to the
SAT-solver.

3. A well-chosen set of instances of your problem, which will allow you to test your
modelization.

4. A group presentation during which you will present your problem, its modeliza-
tion, and you will run your programs on your personal computer, or a university
computer.

2.2 Planning

� This document is online from the very beginning of the course, a short version is
distributed to students.

� Your group and topic have to be chosen before the end of the 2nd week of TD.
� Delivery, by email to the TD lecturer, of the pre-report describing the modelization

part of the project (max 5 pages) no later than March 10th 2023.
� Delivery, by email to the TD lecturer, of the �nal report and the source codes, no

later than April 28th 2023.
� Group presentation of your project during the weeks of May 1st-5th or May 8th-12th

(20 minute presentations, question time included).

2. if you are using JAVA, you can mimic the example found at www-verimag.imag.fr/~devismes/
JAVA/Fichier.java.



3 Technical notes

SAT and n-SAT Knowing if a propositional logic formula in conjunctive normal form
(CNF) is satis�able is called �satis�ability problem� or �SAT problem�. When a CNF
formula only contains clauses of n literals, the problem is called � n-SAT problem�.

DIMACS format : The format used as input to SAT-solvers is an international stan-
dard used for endocing formulas in conjunctive normal form. A �le in the DIMACS format
begins with a line specifying that the formula is in normal form, the number of variables
in the formula, and how many clauses it contains. For example, p cnf 5 3 says that the
�le contains a formula in conjunctive normal form with 5 variables and 3 clauses. Then,
the following lines describe the clauses, one on each line. Each line contains positive or
negative integers, and ends with a zero. A positive integer i indicates that the ith variable
appears in the clause, whereas a negative integer −i indicates that the negation of the ith

variable atppears in the clause. For example, here's a formula, followed by its encoding
using the DIMACS format :

(x1 ∨ ¬x5 ∨ x4) ∧ (¬x1 ∨ x5 ∨ x3 ∨ x4) ∧ (¬x3 ∨ ¬x4)

c

c start with comments

c

c

p cnf 5 3

1 -5 4 0

-1 5 3 4 0

-3 -4 0

4 Examples of Possible Topics

Any logical game that consists in �lling a grid with all the useful information available
can be modeled. For instance, you could tackle :

� Easy :
� Squaro
� N queens

� Medium :
� Futoshiki
� Dosun-Fuwari
� Norinori
� Graph Coloring

� Hard :
� Light Up
� Usowan
� Hashiwokakero
� Tetravex
� Kurotto



� Any other topic validated by your TD lecturer
Other topics will be listed on page
https://wackb.gricad-pages.univ-grenoble-alpes.fr/inf402/

together with links to demo applets.

5 Example with the Pigeon Problem

We illustrate our minimum expectations for this project with a simple problem.

5.1 Problem

A pigeon-fancier owns n nests and p pigeons. He wishes that :
� each pigeon lives in a nest,
� there be at most one pigeon per nest
How can we help him with logic ?

5.2 Modeling the Problem Using First Order Logic

Predicate P (i, j) is true if and only if pigeon i is in nest j. The constraints of the
probmes are modelled as follows :

� Each pigeon lives in a nest : ∀i, ∃j, P (i, j).
� There is at most one pigeon in each nest : ∀i,∀k, i 6= k =⇒ ∀j, P (i, j) ∨ P (k, j).

5.3 Modelization in Conjunctive Normal Form

The boolean variable xi,j is true if and only if pigeon i lives in nest j. For example,
for a set of pigeons {a, b, c} and a set of nests {1, 2, 3, 4}, the following constraints must
be given to the SAT-solver :

(xa,1 ∨ xa,2 ∨ xa,3 ∨ xa,4)
∧ (xb,1 ∨ xb,2 ∨ xb,3 ∨ xb,4)
∧ (xc,1 ∨ xc,2 ∨ xc,3 ∨ xc,4)
∧ (xa,1 ∨ xb,1)∧ (xa,1 ∨ xc,1)∧ (xb,1 ∨ xc,1)
∧ (xa,2 ∨ xb,2)∧ (xa,2 ∨ xc,2)∧ (xb,2 ∨ xc,2)
∧ (xa,3 ∨ xb,3)∧ (xa,3 ∨ xc,3)∧ (xb,3 ∨ xc,3)
∧ (xa,4 ∨ xb,4)∧ (xa,4 ∨ xc,4)∧ (xb,4 ∨ xc,4)

5.4 Resolution by a SAT-solver

After translating the cnf formula into the DIMACS format, a SAT-solver will give an
assignment to each variable satisfying the system of contraints. Using this, we can deduce
how to place each pigeon. We note that while this problem is very easy to solve manually,
the computer will have to solve an exponential number of constraints to solve it using
logic.



6 Optional part : SAT solver

For the most advanced groups, you have the possibility of programming your own
SAT solver (in your favourite programming language) with several resolution strategies.

Your solver will be a WalkSat type solver (see paragraph below). It will take as input
the set of clauses to resolve in the form of a DIMACS �le. The aim is then to return
an assignement satisfying all clauses in that set, whenever possible. Notice that WalkSat

solvers are incomplete : if the set of clauses given as input is contradictory the solver will
not be able to determine it.

The pseudo-code of the WalkSat algorithm is given below as a reference.

1: Draw an assignment v at random according to a uniform distribution

2: i = 0

3: WHILE (v is not a model) and i < N DO

4: Pick a clause C amongst clauses C' such that v(C') = false

5: Draw a real number q in [0,1] according to a uniform distribution

6: IF q < P THEN

7: Pick a variable x in C according to a uniform distribution

8: ELSE

9: Pick a variable x in C deterministically

10: END IF

11: Flip the value of v(x) in the assignement v

12: i++

13: END WHILE

14: IF v is a model THEN

15: RETURN v

16: ELSE

17: RETURN "undecided"

18: ENDIF

The code above has gaps, and that is on purpose... Indeed it does not specify the
values of N , P , or the procedure to deterministically choose variable x at line 9.
It is up to you to determine a reasonable value for such constants, and to choose variable
x so that it minimizes the number of unsatis�ed clauses.

Optionally, you may experiment so as to �nd the best possible values of N and P ,
and program other heuristics for the choice of x, for instance :

� Choose the least modi�ed variable of C ;
� Assign to each variable y a score with computed as the di�erence between the

number of positive occurences, and negative occurences across clauses. Then choose
the variable with the best score ;

� Heuristics inspired from MOMS and JW heuristics given in the course notes ;
� A mix some of these strategies ;
� Etc.

In that case it would be interesting to compare the di�erent heuristics that you imple-
mented.



Note that to simplify your implementation, you can assume that the set of clauses
received has been preprocessed to get an equivalent 3-SAT problem (see end of Section 1
of this document).


