Testing the Satisfiability of Formulas in Separation Logic with Permissions

N. Peltier

Univ. Grenoble Alpes, CNRS, LIG - ANR Project NARCO

TABLEAUX 23 Prague, Czech Republic, September 18-21, 2023

- A logic used in program verification to reason on mutable data structures (pointers)
- Introduced in 2000 (Reynolds, O'Hearn, Ishtiaq, Yang), based on earlier work by Burstall, O'Hearn and Pym
- Now (since about 2009) used in industrial static analyzers (e.g., Facebook Infer, Microsoft SLAyer etc.)
- Facilitate modular reasoning
 - Express key properties in a more natural and concise way
 - Enable local reasoning
 - Separating conjunction : assert disjointness of memory blocks

イロト イポト イヨト イヨト 三日

Separation Logic : Ingredients

- Points-to atoms of the form x → (y₁,..., y_k)
 "Location (i.e., memory address) x is the only allocated location and points to the tuples of locations y₁,..., y_k"
- Special atom emp

"The heap is empty (no allocated location)"

- A special connective *, called separating conjunction φ₁ * φ₂
 "The heap can be split into two disjoint parts, satisfying φ₁ and φ₂, respectively"
- Inductively defined predicates (fixpoint semantics), used to describe finite structures of unbounded size, e.g., list segments :

$$ls(x,y) \Leftarrow emp \land x \approx y$$
 $ls(x,y) \Leftarrow \exists z(x \mapsto z * ls(z,y))$

• Equational atoms, usual connectives

高 と く ヨ と く ヨ と

Automation of Reasoning in SL with Inductive Definitions : Existing Results

• Focus on symbolic heaps

$$\exists x_1,\ldots,x_n [(A_1*\cdots*A_n) \land \phi]$$

where the ${\cal A}_i'{\rm s}$ are atoms, ϕ is a conjunction of equational literals

- Satisfiability is EXPTIME-complete [Brotherston et al. LICS 14]
- Entailment is undecidable
- Entailment is 2-EXPTIME-complete if the inductive definitions satisfy some conditions [losif et al., CADE 13, Katelaan et al. TACAS 19, Echenim et al. LPAR 20, CSL 21, CADE 22]

• • = • • = •

Automation of Reasoning in SL with Inductive Definitions : Existing Results

• Focus on symbolic heaps

or simply :
$$\exists x_1, \ldots, x_n [A_1 * \cdots * A_n]$$

where the A'_i s are atoms or equational literals, assuming equational literals are satisfied only in empty heaps

- Satisfiability is EXPTIME-complete [Brotherston et al. LICS 14]
- Entailment is undecidable
- Entailment is 2-EXPTIME-complete if the inductive definitions satisfy some conditions [losif et al., CADE 13, Katelaan et al. TACAS 19, Echenim et al. LPAR 20, CSL 21, CADE 22]

• • = • • = •

Heaps with Permissions :

- Some locations can be "shared" between threads, if the permissions are compatible [Bornat, POPL 2005]
- Points-to atoms of the form : x → (y₁,..., y_n)
 "Location x is allocated with permission z and refers to y₁,..., y_n"
- Non disjoint heaps may be combined if :
 - They agree on the shared locations
 - The permissions are compatible
- Inductive predicates have parameters denoting permissions

伺 ト イヨ ト イヨ ト

Permission Model

- A set of *permissions*, e.g., : write, read
- A (partial) combination operator \oplus stating which permissions can be combined and what is the resulting permission, e.g. :

$\texttt{write} \oplus \textit{x}$	undefined
$\mathtt{read} \oplus \mathtt{read}$	read

- Another example of permission model
 - Rational numbers in $]0, \ldots, 1]$
 - $x \oplus y = x + y$ if $x + y \le 1$, undefined otherwise
- (optional) Additional predicates on permissions, maximal permission
- Permission terms may be undefined : *def*(*p*) true if *p* is defined

伺 と く ヨ と く ヨ と

- Basic Separation Logic
 - $x \mapsto (y) * x \mapsto (z)$ is unsatisfiable
 - x cannot be allocated in disjoint parts of the heap
- Separation Logic with Permissions
 - $x \stackrel{p}{\mapsto} (y) * x \stackrel{q}{\mapsto} (z)$ is satisfiable
 - entails that y = z and that p and q are compatible (e.g. p = q = read

伺 ト イヨ ト イヨ ト

Existing Results on Automated Reasoning in Separation Logic with Permissions

[Demri et al. FSTTCS 2017] :

- Focus on list segments with (a unique) permission
- Assuming we have an oracle for the permission theory :
 - Satisfiability is in NP
 - $\bullet~$ Entailment is co- $\rm NP$
- What can be said about generic inductive definitions?

- On the negative side : satisfiability is undecidable in general
- On the positive side : EXPTIME-complete for a syntactic fragment : ∃-restricted h-regular inductive definitions
- The fragment is sufficiently expressive to denote many usual data structures such as lists or trees, but not, e.g., doubly linked lists

・ 同 ト ・ ヨ ト ・ ヨ ト …

- * Weak separating conjunction :
 - Based on the combination of permissions
 - Used in input formulas
- Strong separating conjunction : disjoint union of heaps
 - Usual separating conjunction in SL without permissions
 - Useful in the paper to define the satisfiability testing algorithm
 - Also useful to define inductive predicates
 - $x \stackrel{p}{\mapsto} (y) \circ x \stackrel{q}{\mapsto} (z)$ is unsatisfiable

Weak Separating Conjunction

Heaps are partial functions mapping locations to pairs (I, p) where I is a tuple of locations and p is a permission

Definition

If $\mathfrak{h}_1, \mathfrak{h}_2$ are heaps, then $\mathfrak{h}_1 \sqcup \mathfrak{h}_2$ is defined iff for every $\ell \in \operatorname{dom}(\mathfrak{h}_1) \cap \operatorname{dom}(\mathfrak{h}_2)$, if $\mathfrak{h}_i(\ell) = (\ell_1^i, \ldots, \ell_{k_i}^i, \pi_i)$ (for i = 1, 2) then :

•
$$k_1 = k_2$$
, $\ell_j^1 = \ell_j^2$ holds for all $j \in \{1, \dots, k_1\}$

• and $\pi_1 \oplus \pi_2$ is defined

Then $\mathfrak{h}_1\sqcup\mathfrak{h}_2$ is defined as follows :

• If $\ell \in \operatorname{dom}(\mathfrak{h}_i) \setminus \operatorname{dom}(\mathfrak{h}_j)$ with $(i, j) \in \{(1, 2), (2, 1)\}$ then $(\mathfrak{h}_1 \sqcup \mathfrak{h}_2)(\ell) \stackrel{\text{def}}{=} \mathfrak{h}_i(\ell)$

• If
$$\ell \in \operatorname{dom}(\mathfrak{h}_1) \cap \operatorname{dom}(\mathfrak{h}_2)$$
 then
 $(\mathfrak{h}_1 \sqcup \mathfrak{h}_2)(\ell) \stackrel{\text{\tiny def}}{=} (\ell_1^1, \dots, \ell_{k_1}^1, \pi_1 \oplus \pi_2)$

A (1) > A (2) > A

Why Do We Need Strong Separating Conjunction?

Can we define list segment with weak separating conjunction?

$$\begin{array}{rcl} ls(x,y,z) & \leftarrow & x \approx y \\ ls(x,y,z) & \leftarrow & \exists u \left(x \stackrel{z}{\mapsto} (u) * ls(u,y,z) \right) \end{array}$$

Two issues :

- Does not fit in with the usual definition of lists [Demri et al., 2017] :
 - ls(x,x,z) true on the heap : $\{x \mapsto (x,z)\}$ (good)
 - but also on any heap of the form

$$\{x\mapsto (x,z\oplus\ldots\oplus z)\}$$

(if $z \oplus \ldots \oplus z$) defined)

 Using weak conjunction inside inductive definitions makes the satisfiability problem undecidable, even for some very simple structures *Is* should be defined as follows (using strong conjunction) :

$$\begin{array}{lll} ls(x,y,z) & \Leftarrow & x \approx y \\ ls(x,y,z) & \Leftarrow & \exists u \, (x \stackrel{z}{\mapsto} (u) \circ ls(u,y,z)) \end{array}$$

Weak separating conjunction is useful only in input formulas

A Restriction on Inductive Rules

Definition

A rule is \mathfrak{h} -regular if it is of the following form : $P(x, \mathbf{y}, \mathbf{z}) \Leftrightarrow \exists u_1, \ldots, u_n(x \stackrel{p}{\mapsto} (v_1, \ldots, v_k) \circ Q_1(u_1, \mathbf{y}_1, \mathbf{z}_1) \ldots \circ Q_n(u_n, \mathbf{y}_n, \mathbf{z}_n) \circ \phi)$ where

- x, y are location variables, z_i, z are tuples of permission variables, p is a permission term
- $\{u_1,\ldots,u_n\}\subseteq\{v_1,\ldots,v_k\}$ and ϕ is purely equational
- All the variables in **z**_i, z occur in **z**
- A strictly more restrictive version of the PCE conditions of [losif et al., CADE 2013]
 - Each existential variable must be allocated at *the next recursive call*
- Encode regular languages + additional pointers to previously allocated nodes (or free variables)
- No compound permission term in recursive predicate calls

- As we shall see, these restrictions are insufficient for the decidability of the satisfiability problem
- Additional restrictions are needed on the use of existential variables

• • = • • = •

We first describe the last step of the algorithm :

- Consider a formula of the form $\phi_1 \circ \ldots \circ \phi_n$, where ϕ_i are atoms
- Close to separation logic with no permission
- It suffices to construct abstractions of models (\sim, A, ρ) , where : \sim is an equivalence relation on free variables denoting locations (equality relation), A denotes a the set of allocated free variables, and ρ is a permission formula
- Easy to construct by induction on the formulas (with fixpoint computation)

伺 ト イヨ ト イヨ ト

 $\mathcal{A}(\phi)$ is a set of heap abstraction defined as follows : as follows (for all equivalence relations \sim) :

• If
$$\phi = P(\mathbf{x}, p)$$
 and $\phi \Leftarrow_{\mathfrak{R}} \xi$ then $\mathcal{A}(\xi) \subseteq \mathcal{A}(\phi)$.

(4月) (3日) (3日) 日

Lemma

 $\mathcal{A}(\phi)$ is finite (trivial as only a bounded number of free variables need to be considered, but key point : no existential variable of type permission)

Lemma

 ϕ is satisfiable iff $\mathcal{A}(\phi)$ contains a tuple (\sim, A, ρ) such that ρ is satisfiable

What About Weak Separating Conjunctions?

- Goal : transform formulas of the form $\phi_1 * \cdots * \phi_n$ into $\psi_1 \circ \ldots \circ \psi_m$
- Three steps :
 - Decompose every spatial atom \u03c6_i into a \u03c6-conjunction \u03c6_i i \u03c6_i ... \u03c6 \u03c6_{m_i} such that every \u03c6_j allocates exactly one free variable \u03c8_j
 - Using the latter property, we may push * below o
 We get a o-conjunction of *-conjunctions of atoms each allocating the same variable x_j
 - Merge each *-conjunctions of atoms into a single atom (with new rules)

・ 同 ト ・ ヨ ト ・ ヨ ト …

- To decompose atoms, we need to synthesize new predicate symbols and rules
- q(y) → r(x) : true in a structure that satisfies r(x) after a disjoint structure satisfying q(y) is added
- Similar to the separating implication —*, but not exactly equivalent, because the definition is not purely semantic : it depends on the unfolding tree
- No need to extend the logic : q(y) → r(x) may be denoted as an atom, with rules automatically generated from those of r(x)

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Context Predicates : Example

Lists :

$$p(x,y) \Leftarrow x \stackrel{y}{\mapsto} () \quad p(x,y) \Leftarrow \exists z (x \stackrel{y}{\mapsto} (z) \circ p(z,y))$$

- $p(y,z) \rightarrow p(x,z)$ denotes a structure obtained from a list satisfying p(x,z) by deleting the part corresponding to the call p(y,z)
- $p(y,z) \rightarrow p(x,z)$ denotes a list segment from x to y : $p(y,z) \rightarrow p(x,z) \equiv ls(x,y,z)$
- $p(y,z) \rightarrow p(x,z)$ is defined by the following rules :

$$p(y,z) \longrightarrow p(x,z) \iff x \approx y$$

$$p(y,z) \longrightarrow p(x,z) \iff \exists u (x \stackrel{z}{\mapsto} (u) \circ p(y,z) \longrightarrow p(x,z))$$

These rules can be computed automatically

伺 と く ヨ と く ヨ と 二 ヨ

For every atom $p(y, \mathbf{z})$ and free variable x, replace $p(y, \mathbf{z})$ by :

Either p'(y, x, z) where the rules of p' are obtained from those of p by adding the constraint u ≉ x for each points-to atom u → (...)

Cover the case where x is not allocated

- Or $\exists \mathbf{u} [q(x, \mathbf{u}) \circ (q(x, \mathbf{u}) p(y, \mathbf{z}))]$ (for some predicate q)
 - Cover the case where x is allocated
 - If x is allocated then (due to the restriction on the rules) there must be a call to some atom of the form q(x, u))
 - q(x, u) → p(y, z) cannot allocate x (more generally each o-conjunction contains at most on atom allocating x)

(4月) (3日) (3日) 日

- The previous transformation ensures that every predicate atom allocates exactly one free variable. . .
- ... but it does not terminate in general :
 - The transformation must be applied on each variable
 - New variables **u** are introduced during the process

Add additional restrictions on the rules :

Easy solution : forbid existential parameters (except at first position in the atom) : for all p(x, y₁,..., y_n), y₁,..., y_n must be free
 Rather restrictive

Rather restrictive

- More general condition : assume that for all y_i that is not free, there is an atom q(y_i, z₁,..., z_n) where z₁,..., z_n are free
- Require to compute, for each predicate p, the set of arguments $\gamma(p)$ of p that may be instantiated by existential variables

何 ト イヨ ト イヨ ト

For instance :

$$\begin{array}{lcl} p(x,y,z) & \Leftarrow & \exists u, v \, x \stackrel{z}{\mapsto} (u,v,y) * p(u,v,z) * q(v,z) & ok \\ q(v,z) & \Leftarrow & v \stackrel{z}{\mapsto} () \\ p(x,y,z) & \Leftarrow & \exists u, v \, x \stackrel{z}{\mapsto} (u,v,y) * p(u,v,z) * p(v,u,z) & ko \end{array}$$

• = • •

- Rules satisfying the above condition are called <u>-restricted</u>
- The condition ensures termination of the previous decomposition process
- Intuitively :
 - New variables are introduced only when applying the decomposition on a variable originally occurring in the formula
 - No new variables are introduced when applying the decomposition on a variable introduced during the decomposition process

伺 と く ヨ と く ヨ と

- Regular tree languages + additional pointers (as in PCE)
- A set of distinguished nodes (free variables)
- The additional pointers may refer :
 - either to distinguished nodes
 - or to a structure with no additional pointers other than distinguished nodes

伺 ト イ ヨ ト イ ヨ ト

Second Step : Pushing * below o

Lemma

If ψ_i and ψ'_i allocates exactly the free variables V_i , and $V_1 \cap V_2 = \emptyset$, then : $(\psi_1 \circ \psi_2) * (\psi'_1 \circ \psi'_2)$ is satisfiable iff $(\psi_1 * \psi'_1) \circ (\psi_2 * \psi'_2)$ is satisfiable

Proof

Idea :

- $(\psi_1 * \psi_1') \circ (\psi_2 * \psi_2') \models (\psi_1 \circ \psi_2) * (\psi_1' \circ \psi_2')$ holds if every case
- For the converse :
 - Rename all locations not associated to free variables in the model of $\psi_2 * \psi_2'$ so that they do not occur in the model of $\psi_1 * \psi_1'$
 - $\bullet\,$ The renaming does not affect the model of $\psi_1 \ast \psi_1'$
 - As ψ_1 and ψ'_2 allocate distinct free variables, this ensures that the heaps corresponding to ψ_1 and ψ'_2 are disjoint (and similarly for ψ_2 and ψ'_1)

By applying repeatedly the previous result we may transform $*_{i=1}^n(\psi_1^i\circ\ldots\circ\psi_{m_i}^i)$ into :

$$\circ_{j=1}^{m}(\psi_{j}^{1}*\cdots*\psi_{j}^{i})$$

where every formula ψ_j^i allocates *exactly* the same variable x_j (or is emp)

何 と く ヨ と く ヨ と

- Merge $p(x, \mathbf{y}, \mathbf{z_1}) * p'(x, \mathbf{y}', \mathbf{z_2})$ into $pp'(x, \mathbf{y}, \mathbf{y}', \mathbf{z_1}, \mathbf{z_2})$
- The rules of *pp'* are computed by "merging" rules of *p* and *p'*, as for tree automata

Merging *-Conjunctions (2)

Examples :

•
$$p(x, y, z) * p'(x, z')$$
 with

$$p(x, y, z) \quad \Leftarrow \quad x \stackrel{z}{\mapsto} (u, y) \circ q(u, z)$$

$$p'(x, y', z') \quad \Leftarrow \quad x \stackrel{z'}{\mapsto} (u, y') \circ r(u, y', z')$$

• We get :
$$pp'(x, y, y', z, z')$$
 with

$$pp'(x, y, y', z, z') \Leftarrow x \stackrel{z \oplus z'}{\mapsto} (u, y) \circ qr(u, y', z) \circ y \approx y'$$

• The fact that every predicate atom allocates exactly one free variable ensures that the rules can always be combined

• • = • • = •

- The steps described above yield an algorithm for testing the satisfiability of * conjunctions of atoms defined over regular, ∃-restricted rules
- The algorithm has exponential complexity (modulo satisfiability testing for permission formulas)
- The problem is EXPTIME-hard (by reduction from the halting problem for alternating Turing machines running in polynomial space), even with no permissions

・ 同 ト ・ ヨ ト ・ ヨ ト

The problem is **undecidable** in both the following cases :

- If the rules are h-regular, but not ∃-restricted and there are (not necessarily distinct) permissions π₁, π₂ such that π₁ ⊕ π₂ is defined
- Or, if * is used instead of \circ in the definition of the rules and for all $n \ge 0$ there is a permission π such that $\underline{\pi \oplus \ldots \oplus \pi}$ is

defined

n time

If the rules are not \exists -restricted, one may encode the PCP as follows

- Let $u_1, \ldots, u_N, v_1, \ldots, v_N$ be words
- Construct a heap $\{y_i \mapsto (y_{i+1}, c_i, \ell_i, \ell'_i, \pi) \mid i = 1, ..., k\}$ encoding a potential witness $w = w_1 w_k$ with $w = u_{i_1} u_{i_n} = v_{j_1} v_{j_m}$ (with n, m > 0)
- Add links ℓ_i, ℓ'_i to elements of two lists $\lambda_{i_1}, \ldots, \lambda_{i_n}$ and $\lambda'_{j_1}, \ldots, \lambda'_{j_m}$ denoting the sequences $i_1 \ldots, i_n$ and $j_1 \ldots, j_m$
- The lists must be constructed in reverse order to ensure *h*-regularity
- Add a predicate checking that the two lists denote identical sequences (constructing a list of tuples $(\lambda_{i_k}, \lambda'_{j_k})$, again in reverse order)

Undecidability Results (2)

- If \ast is used instead of \circ then one may encode the PCP as follows :
 - Construct a circular list representing the potential witness
 - Since the list is circular one may go through it an arbitrary number of times (assuming that for all n, there exists a permission π such that $n.\pi$ is defined)
 - Use two parameters x, y denoting the positions of the start of words u_{i_j} and v_{i_j} (initially x = y = 1, then $x = |u_{i_1}| + 1$ and $y = |v_{i_1}| + 1$ etc.)
 - At each step : check that the words starting at position x and y are identical and compute the start of the next words x', y'
 - Then repeat the process with x', y'
 - End with a special word #
 - To fulfill the ∃-restrictedness condition, *x*, *x*′ cannot refer to elements of the list
 - Add instead dummy "marks" associated with every element in the list and refer to these "marks"

Future Work

- Relax the ∃-restrictedness conditions?
 - Identify formal parameters that may only be instantiated by a bounded number of variables during unfolding
 - Should be possible, but does not really extend expressive power (encodings are possible)
- Extend to non h-regular case? (use full PCE conditions of [losif et al. CADE 2013] instead)
 - $\exists\text{-restrictedness seems more important for decidability than } \mathfrak{h}\text{-regularity}$
- Entailment Problem ?
 - Use the same ideas : decomposition + commutation of \ast and \circ + merge ?
 - Could be sufficient for quantifier-free entailments?
 - Entailments with existential variables may be more difficult

・ 同 ト ・ ヨ ト ・ ヨ ト