
A Strict Constrained Superposition Calculus for
Graphs

R. Echahed, M. Echenim, M. Mhalla and N. Peltier

Univ. Grenoble Alpes, CNRS – Laboratory of Informatics of Grenoble (CAPP)
Partially funded by the French National Research Agency (ANR-22-PETQ-0007)

FoSSaCS – Paris – April 2023

N. Peltier A Strict Constrained Superposition Calculus for Graphs

Overview

Starting point: Superposition calculus (a proof procedure for
equational reasoning in first-order logic)

Our goal: extend this calculus to handle equations between
graphs

Roadmap:
Motivation
Equational reasoning between first-order terms: the standard
superposition calculus (Bachmair and Ganzinger, 94)
Superposition for graphs: main issues
Theoretical results
Future work

N. Peltier A Strict Constrained Superposition Calculus for Graphs

Motivation

Graphs are ubiquitous in computer science

Useful in many applications: to model complex data
structures in programming, software and hardware
architecture, data bases etc.

It is often convenient to consider equational theories over such
objects

N. Peltier A Strict Constrained Superposition Calculus for Graphs

Motivation (2)

Useful in particular in quantum computing: e.g., ZX calculus

Describe a quantum transformation (linear map) as a ZX
diagram (circuit)

The semantics may be defined as complex matrices of size
2Ninput+Noutput

Alternatively, quantum properties can be described by
equations between graphs

Correctness proofs may be performed by proving that two
graphs are equal modulo this set of equations

N. Peltier A Strict Constrained Superposition Calculus for Graphs

An example: formalization of the quantum teleportation
protocol in the ZX calculus

in

H

βα

β

α

out

Alice Bob

N. Peltier A Strict Constrained Superposition Calculus for Graphs

An example: formalization of the quantum teleportation
protocol in the ZX calculus

in

α

β

β

α

out

N. Peltier A Strict Constrained Superposition Calculus for Graphs

An example: formalization of the quantum teleportation
protocol in the ZX calculus

in

α

β

β

α

out

N. Peltier A Strict Constrained Superposition Calculus for Graphs

An example: formalization of the quantum teleportation
protocol in the ZX calculus

in

α

α

out

N. Peltier A Strict Constrained Superposition Calculus for Graphs

An example: formalization of the quantum teleportation
protocol in the ZX calculus

in

out

N. Peltier A Strict Constrained Superposition Calculus for Graphs

An example of rule

(source: https://zxcalculus.com/)

N. Peltier A Strict Constrained Superposition Calculus for Graphs

Our Goal

Develop techniques to check the equivalence of two graphs modulo
a set of equations

A generic approach

As general as possible (conditional rules, disjunctions. . .)

Must be as efficient as possible

N. Peltier A Strict Constrained Superposition Calculus for Graphs

Starting Point: Equational Reasoning on Standard Terms

The superposition calculus of Bachmair and Ganziner (94)

Very efficient and practically successful

Widely used and thoroughly investigated

Can the calculus be extended to graphs?

N. Peltier A Strict Constrained Superposition Calculus for Graphs

The Superposition Calculus

= Resolution calculus + Knuth Bendix completion

Handles set of equational clauses

t1 ≈ s1 ∨ · · · ∨ tn ≈ sn ∨ t ′1 ̸≈ s ′1 ∨ · · · ∨ t ′m ̸≈ s ′m

with n ≥ 0, m ≥ 0, ti , si , t
′
i , s

′
i are first-order terms (with

variables)

A set of inference rules deducing new clauses from existing
ones

Very restrictive application conditions, parameterized by an
order on terms and literals

Reduction order = well-founded order closed under embedding
and substitution, containing the subterm relation

A very general criterion to delete redundant clauses

N. Peltier A Strict Constrained Superposition Calculus for Graphs

An Example of Rule - Positive Superposition

t ≈ s ∨ C u[t ′] ≈ v ∨ D

(u[s] ≈ v ∨ C ∨ D)σ

if:

σ is the most general unifier of t ′ and t

tσ ̸< sσ

(u[t ′] ≈ v)σ is maximal in (u[t ′] ≈ v ∨ D)σ

(t ≈ s)σ is maximal in (t ≈ s ∨ C)σ

Intuition: compute critical pairs of rules t → s and u → v
u[t]

v u[s]

N. Peltier A Strict Constrained Superposition Calculus for Graphs

Redundancy Criterion

Redundant Clause

A clause C is redundant in S if for every ground instance Cσ of C ,
there exist ground instances D1θ1, . . . ,Dnθn (with n ≥ 0) of
clauses in S such that:

Cσ is a logical consequence of D1θ1, . . . ,Dnθn

Cσ is (strictly) greater than D1θ1, . . . ,Dnθn

For instance, all tautological (= valid) clauses are redundant

N. Peltier A Strict Constrained Superposition Calculus for Graphs

Properties of the Superposition Calculus

Sound

Refutationally complete

Very efficient in practice

Can even be used as a decision procedure for several fragments

Numerous extensions

N. Peltier A Strict Constrained Superposition Calculus for Graphs

Can we do the same for graphs?

Numerous issues, regarding completeness:

Can we reason modulo isomorphism?

Can we use the same redundancy criterion ?

What about reduction orders?

N. Peltier A Strict Constrained Superposition Calculus for Graphs

Lifting Superposition to Graphs: First Completeness Issue

Reasoning up to isomorphism is not always sufficient:

≈

The equation can be considered as trivial since the two graphs are
isomorphic
But it contradicts the following disequation:

̸≈

From the standpoint of Superposition: the calculus is
incomplete: no clauses can be derived if graphs are taken up
to isomorphism

From the standpoint of rewriting: confluence is hard to
establish for graph rewrite rules

The critical pair lemma is not true
Confluence is not decidable for terminating systems (Plump
05)

N. Peltier A Strict Constrained Superposition Calculus for Graphs

Lifting Superposition to Graphs: A Unsatisfactory Solution

A trivial solution: name all the nodes

1 2 ≈ 1 2

The equation is not tautological anymore... but redundancy
deletion becomes very weak

N. Peltier A Strict Constrained Superposition Calculus for Graphs

How to Overcome the Confluence Issue?

Use graphs with interface

Interface = a sequence of distinguished named nodes (the
roots)

Allow one to connect the graph to the outside world

The other (non root) nodes can be renamed arbitrarily. . .

. . . but cannot be linked to the outside of the graph

A trade-off between the flexibility of graph composition and
the strength of redundancy deletion

N. Peltier A Strict Constrained Superposition Calculus for Graphs

Lifting Superposition to Graphs: Redundancy

More general inference rules are required:

g: ρ1 0

1

= ρ1 1

2

h: 0 ρ1

1

= 2 ρ1

2

We can “merge” g and i as follows: ρ1 0

1

0

We deduce:

0 ρ1 1

2

= 2 ρ1 0

2

N. Peltier A Strict Constrained Superposition Calculus for Graphs

Lifting Superposition to Graphs: Redundancy (2)

The previous example shows that the conclusion of a rule can
be strictly greater than both premises

Not compatible with the usual redundancy criterion:
such a conclusion is always redundant (in the usual sense)
hence the inference will be blocked

N. Peltier A Strict Constrained Superposition Calculus for Graphs

Lifting Superposition to Graphs: Tautologies

The calculus is incomplete if tautologies are deleted. Consider the
graphs g1, g2 and g3 with roots (ρ1, ρ2, ρ3):

g1: ρ1

ρ2ρ3

g2: ρ1

ρ2ρ3

g3: ρ1

ρ2ρ3

Let ġi be a graph obtained from gi by adding an isolated node

S = {ġ1 ≈ g2∨ ġ2 ≈ g3∨ ġ3 ≈ g1, ġ1 ̸≈ g2∨ ġ2 ̸≈ g3∨ ġ3 ̸≈ g1}
S is unsatisfiable but cannot be refuted if tautologies are
deleted

N. Peltier A Strict Constrained Superposition Calculus for Graphs

How to Overcome the Redundancy Issue?

Use a much more restricted redundancy criterion

Based on a carefully designed set of simplification rules

Demodulation (equational simplification)
Subsumption
Deletion of trivial equations or disequations (modulo
isomorphism)

A clause is redundant if it can be reduced to ⊤ using the set
of simplification rules

Tautology deletion is possible only in some very specific cases
(Horn clauses)

N. Peltier A Strict Constrained Superposition Calculus for Graphs

Lifting Superposition to Graphs: Order Issue

No reduction order that is total on ground graphs exists

Consider the graphs:

and

These two graphs are distinct (non-isomorphic) hence one of
them must be strictly greater than the other

But if we add the same two edges in each graph, we get two
isomorphic graphs (contradicting the closure under embedding
requirement):

and

N. Peltier A Strict Constrained Superposition Calculus for Graphs

How to Overcome the Order Issue?

Use orders that are not total on ground graphs (e.g.: number of
nodes)

Not problematic for defining the calculus (reduction orders are
not complete anyway for non ground terms)

However, total reduction orders are essential for the
completeness proof

Completeness is usually ensured by constructing a model of
saturated sets of clauses (not containing □)

The model is described as a convergent set of equations

Termination is a ensured by orienting the rules: t ≈ s yields
t → s if t > s

Confluence stems for the fact that the considered set is
saturated

N. Peltier A Strict Constrained Superposition Calculus for Graphs

How to Overcome the Order Issue? (2)

Adapt the completeness proof

If no total reduction order exists, then some equations cannot
be oriented anymore (t ≈ s yields both t → s and s → t)

The obtained rewrite system is not terminating

Confluence is more difficult to establish (local confluence is
not enough)

Our solution: a new confluence criterion, based on (an
extension of) subcommutative relations

N. Peltier A Strict Constrained Superposition Calculus for Graphs

Results

A new class of graphs for which a sound and complete
calculus can be defined

Sufficiently expressive to encode ZX diagrams (or similar
circuits, with distinguished input/output edges)

N. Peltier A Strict Constrained Superposition Calculus for Graphs

Results (2)

The calculus is defined in two steps:

Defined first for non-interpreted (ground) labels

In a second step, the calculus is extended into a
constrained-based calculus, handling labels with variables,
interpreted in any decidable theory (e.g., graph with
arithmetic labels on vertices)

Extract the conditions on the labels that make the application
of inference rule possible and add them to the constraints of
the conclusion

Adapt all simplification rules to handle constraints

N. Peltier A Strict Constrained Superposition Calculus for Graphs

Main Theorems

Soundness

For all clause sets S , for all constrained clauses [C | X] deducible
from S , for all substitutions σ such that Xσ is true (in the label
theory), Cσ is a logical consequence of S .

Completeness

If S is unsatisfiable and saturated under all inference rules (w.r.t.
the redundancy criterion) then there exists a set of constrained
clauses {[□ | Xi] | i ∈ I} such that

∧
i∈I ¬Xi is unsatisfiable (in

the label theory).
If, moreover, the label theory is compact, then I is finite, and
unsatisfiability is thus semi-decidable.

N. Peltier A Strict Constrained Superposition Calculus for Graphs

An Example of Rule

The Graph Positive Superposition rule

[g1 ≈ h1 ∨ C1 | ϕ1] [g2 ≈ h2 ∨ C2 | ϕ2]
[i{g1 ← h1} ≈ i{g2 ← h2} ∨ C1 ∨ C2 | ϕ1 ∧ ϕ2 ∧ ψ]

where:

1 i is a “merge” of g1 and g2 with constraint ψ, and g1 and g2
are not “disjoint”;

2 gi ≈ hi is maximal in [gi ≈ hi ∨ Ci | ϕ1 ∧ ϕ2 ∧ ψ] (for all
i = 1, 2);

3 gi is not strictly lower than hi (for all i = 1, 2) taking into
account the constraints ϕ1 ∧ ϕ2 ∧ ψ).

N. Peltier A Strict Constrained Superposition Calculus for Graphs

Future Work

Implementation

How to prune the search space?

How to represent huge sets of graphs efficiently?

Graph variables

Termination issues

Add new rules to enable tautology deletion

N. Peltier A Strict Constrained Superposition Calculus for Graphs

