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Abstract. We present a resolution calculus for first-order logic using a more concise formalism for
representing sets of clauses. The idea is to represent the clause set at hand as aDirectedAcyclic
Graph, which allows one to share common literals instead of duplicating them, thus yielding a
much more compact representation of the search space. We define inference rules operating on this
language and we prove their soundness and refutational completeness. We also design simplification
rules for pruning the search space. Finally we compare our technique with the usual resolution
calculus and we prove (using the pigeonhole example) that our method can reduce the length of the
proof by an exponential factor (in propositional logic).
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1. Introduction

The resolution method [18, 13] is one of the most widely used approaches in first-order theorem proving.
Most powerful theorem provers nowadays are based on resolution techniques (using superposition for
handling equalities). Theuniformityand very lowbranching factorof the resolution calculus makes it
very efficient in practice (especially when strategies are used to reduce the search space).

However, when compared to other logical formalisms such as natural deduction or sequent calculi,
resolution has an important drawback. The length of the obtained proof is at most exponentially shorter
than the Herbrand complexity of the clause set at hand (i.e. the number of closed instances needed
in the derivation). This implies that resolution proofs are in general non-elementary longer than the
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shortest proof in sequent calculus with cut for instance [19]. Resolution is known to be inefficient on
some particular (propositional) formulae or sequences of formulae such as the well-known pigeonhole
problem for which the shortest resolution proof is exponential, whereas polynomial proofs exist in more
powerful systems (see for instance [12, 7, 4] for more details about this issue).

Various techniques have been proposed for overcoming this problem. In particular, the non-analytic
“cut” rule used in sequent calculi can be easily simulated in the context of the resolution calculus by
adding a rule dynamically introducing new predicate definitions in the clause sets. This idea has been
introduced by Tseitin [20] for propositional proofs and extended to first-order logic in [9]. Definitions
of the formp(~x) ⇔ φ wherep is a new predicate symbol andφ a formula on the variables in~x can be
derived and processed (after transformation into clausal form). Unfortunately, just as the cut rule, this
approach is not suitable for pure automatic proof search since no heuristic exists for choosing the right
definitions (systematic introduction of all possible definitions is of course unrealistic). Function intro-
duction techniques [2] have also been designed for simulating some particular form of cut introduction.
[10] considered various kinds of function introduction rules and analyzed the influence of these rules on
the length of the shortest proofs. Still, this approach greatly increases the branching factor of the calculi.

In this paper, our aim is to introduce a technique for reducing proof length which does not suffer from
this drawback, thus does not increase too much the search space. The basic idea is to avoid duplicating
literals – or disjunctions of literals – during the search (in particular when applying the resolution rule).
To this purpose, we allow disjunctions of literals to besharedbetween distinct clauses, which avoids
having to explicitly copy them. Consequently, the inferences applied on these literals aresimultaneously
proceeded onall the clauses in which it occurs. More precisely, instead of defining a calculus operating
on clauses as usual (i.e. on disjunctions of literals), we consider more complex (quantifier-free) formulae,
which we called “†-formulae”, possibly containingconjunctions, disjunctions, andshared subformulae.
This formalism is related to AND-OR graphs that are commonly used to represent the search space of
subgoal-reduction strategies (in particular in Horn logic). It has the same theoretical expressive power
of clause sets, but is much more concise. Then we define appropriate inference and simplification rules
operating on such†-formulae. These rules extend the usual resolution, factorization or subsumption
rules to the new language. We shall see that the obtained calculus allows one to factorize some part of
the proofs – thus significantly reducing their length – due to the possibility of sharing identical subgoals.
It can also prune the search space.

Before entering in the technical details, we illustrate our point on a (deliberately simple) example, in
order to allow the reader to grasp the intuitive ideas behind our method.

Let S be the following clause set (p, q, r are predicate symbols,x is a variable,a1, . . . , an denotes
constant symbols).

1 p(a1) ∨ . . . ∨ p(an)
2 ¬p(x) ∨ q(x)
3 ¬p(x) ∨ r(x)

Assume that the atoms are ordered as follows:p(x) > q(y) > r(z), with p(a1) > p(a2) . . . > p(an)
(the ordering is chosen only to illustrate our point). Literalp(a1) is maximal in Clause1. We can resolve
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Clause1 with Clauses2 and3 yielding respectively the two following clauses:

4 q(a1) ∨ p(a2) ∨ . . . ∨ p(an) (res,1, 2)

5 r(a1) ∨ p(a2) ∨ . . . ∨ p(an) (res,1, 2)

At this pointp(a2) becomes maximal in Clauses4 and5, thus we can again apply the resolution rule
with clauses2 and3, yielding

6 q(a1) ∨ q(a2) ∨ p(a3) ∨ . . . ∨ p(an) (res,4, 2)

7 r(a1) ∨ q(a2) ∨ p(a3) ∨ . . . ∨ p(an) (res,5, 2)

8 q(a1) ∨ r(a2) ∨ p(a3) ∨ . . . ∨ p(an) (res,4, 3)

9 r(a1) ∨ r(a2) ∨ p(a3) ∨ . . . ∨ p(an) (res,5, 3)

By repeating this process for each constant symbolai, we get2n clauses of the form
∨n

i=1 pi(ai),
where for alli ∈ [1..n], pi = q or pi = r.

Clearly, this huge search space can be significantly reduced by using a more concise and more ap-
propriate representation of clauses. The above clause set can be represented as a disjunction

n∨
i=1

φ(ai),

whereφ(ai) denotes the conjunctionp(ai) ∧ q(ai) ∧ r(ai).
This conjunction could be obtained from the original clause set as follows. First the resolution rule

is applied on1 and2, yieldingq(a1) ∨ p(a2) . . . ∨ p(an). But instead of duplicating the whole sequence
of literalsp(a2), . . . , p(an) we simply “insert” the literalq(a1) in clause1. Indeed, by distributivity, the
conjunction

[p(a1) ∨ p(a2) . . . ∨ p(an)] ∧ [q(a1) ∨ p(a2) . . . ∨ p(an)]

is equivalent to
[p(a1) ∧ q(a1)] ∨ p(a2) . . . ∨ p(an).

Thus instead of adding a new clause, we merelyreplacethe resolved literal in the original clause (i.e.
p(a1)) by the conjunctionp(a1) ∧ q(a1).

This principle can be generalized. In order to apply the resolution rule on a literall occurring in
a formulaφ and a literal¬l occurring in a formulaψ, we replace the occurrence ofl insideφ by the
conjunctionl ∧ ψ′, whereψ′ is obtained fromψ by replacing¬l by false. Obviously, the context is not
affected by the application of the rule. Of course in the first-order case some variables can be instantiated
which implies that some copying is still necessary (as we shall see in Section 3). But our technique
reduces this to a minimum.

At this point, we get:
[p(a1) ∧ q(a1)] ∨ p(a2) ∨ . . . ∨ p(an)

Then we apply the resolution rule onq(a1) using the clause3. According to the above principle, we
replace the literalq(a1) by (q(a1) ∧ r(a1)), hence we get:

[p(a1) ∧ q(a1) ∧ r(a1)] ∨ p(a2) ∨ . . . p(an)
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By repeating this process for anyi ∈ [1..n] we get:

n∨
i=1

(p(ai) ∧ q(ai) ∧ r(ai)).

In some sense, our approach has similar effects as the adding of additional definitions by the exten-
sion rule of Tseitin or Eder for instance (see above). For instance, in the above example,φ(ai) could be
introduced by an extension step as a name for the formulap(ai)∧q(ai)∧r(ai) and the clause

∨n
i=1 φ(ai)

could be inferred. Our technique, though more restricted, has some advantages. First, the choice of the
formulae that should be “named” is strongly guided by the context: we do not rely on “blind” generation
of arbitrary definitions. Second, the adding of the definitions is made implicit in the calculus.

The rest of this paper is devoted to a formalization of this technique and to the study of some of the
properties of the obtained calculus. It is structured as follows.

• In Section 2 we introduce a new language for denoting clauses and sets of clauses, the so-called
†-formulae. We describe the syntax and semantics of our language and provide some additional
definitions.

• In Section 3 we show how to extend the resolution calculus in order to handle†-formulae instead
of clauses. We define generalizations of the resolution an factorization rules, and we adapt the
usual subsumption rule. We also define some essentially new simplification rules (i.e. rules that
are specific to†-formulae). The obtained calculus is called†-resolution.

• In Section 4.1 we prove the soundness and refutational completeness of†-resolution (with simpli-
fication and redundancy criteria).

• In Section 5 we show that†-resolution refutes the pigeonhole formula in a polynomial number of
steps (which implies that it cannot be simulated by ordinary resolution).

• Section 6 compares our approach with similar ones in the literature.

• Finally, Section 7 concludes the paper.

2. †-Formulae

In this section we introduce the syntax and semantics of the language of†-formulae. A†-formula can be
seen as a special case of a (quantifier-free) first-order formula, in which some of the subformulae can be
shared in order to reduce the size of the formula.

2.1. Preliminaries

We first review some basic definitions and notations. Though all the necessary definitions are provided,
we assume some familiarity with the usual notions in logic and automated deduction (see for instance
[11]).

We assume given3 disjoint sets of symbols: a set offunction symbolsΣ (including constants), a set
of predicate symbolsΩ, a set ofvariablesV. Let arity be a function mapping each symbol inΣ ∪Ω to a
unique natural number.
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The set oftermsis built inductively as usual on the set of function symbolsΣ and the set of variables
V. An atom is an expression of the formp(t1, . . . , tn) wherep ∈ Ω, n = arity(p) andt1, . . . , tn are
terms. Aliteral is either an atom (positive literal) or the negation of an atom (negative literal). Ifl is a
literal, lc denotes the literal complementary ofl (i.e. lc

def= ¬l if l is positive and(¬l)c def= l).
A clauseis a finite multiset of literals (written as a disjunction). The empty clause is denoted by�.
If l is a literal (resp. term, atom, clause) thenvar(l) denotes the set of variables occurring inl. An

expression with no variable is said to beground.
A substitutionσ is a function mapping each variablex to a term denoted byxσ. As usual, a substi-

tution can be extended into a homomorphism on the set of terms (resp. atoms, literals and clauses). If
t, s are two terms (or atoms, literals) thenσ is said to be aunifier of t, s iff tσ = sσ. It is well-known [1]
that any unifiable pair of terms has a most general unifier (m.g.u.), unique up to a renaming.

If C1 = l ∨ D1 andC2 = l′ ∨ D2 are two ground clauses andσ is the m.g.u. oflc andl′, then the
clause(D1 ∨D2)σ is called aresolventof C1, C2. If C = (l ∨ l′ ∨D) andσ is the m.g.u. ofl, l′, then
(l ∨D)σ is afactor of C.

An interpretationis a (possibly infinite) set of ground atoms. An interpretationI satisfies a ground
literal l if either l is positive and occurs inI or l is negative andlc 6∈ I. An interpretation satisfies a
ground clauseC if I satisfies a literall ∈ C. An interpretation satisfies a set of clausesS if for any
C ∈ S and for any ground substitutionσ, I satisfiesCσ. We writeI |= S if I satisfiesS.

A clauseC subsumesa clauseD iff there exists a substitutionσ s.t. Cσ ⊆ D. This is written
C 4sub D. This notation may be extended to clause sets: ifS, S′ are two clause sets, then we write
S 4sub S′ iff for any clauseC ′ ∈ S′ there exists a clauseC ∈ S s.t.C 4sub C ′.

2.2. Syntax of†-Formulae

Let Λ be a set ofnodesdisjoint fromΣ,Ω,V.
Let L ⊆ Λ. A L-clauseis a finite multiset set of nodes occurring inL (denoted as a disjunction).

The emptyL-clause is denoted by�.

Definition 2.1. (†-Formulae) A†-formula is a5-tupleC = (L,M, α, δ, µ) where:

• L ⊆ Λ (L is the set of nodes inC);

• M ⊆ L (M is the subset of nodes that are labeled by literals);

• α ∈ L (α denotes the root ofC);

• δ is a function mapping each symbol inL\M to a set ofL-clauses (δ may be viewed as a transition
function, mapping each node not labeled by a literal to a set ofL-clauses, i.e. a disjunction of
nodes).

• µ is a function mapping each symbol inM to a literal.

Example 2.1. The tupleC = ({α, β, γ, λ, ζ}, {γ, λ, ζ}, α, δ, µ) is a†-formula, where:

δ = {α 7→ {β ∨ γ}, β 7→ {λ, ζ}}
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and

µ = {λ 7→ p(f(x)), ζ 7→ p(g(x)), γ 7→ ¬p(x)}.

As we shall seeC is equivalent to

(p(f(x)) ∧ p(g(x))) ∨ ¬p(x).

Remark 2.1. The reader should note that we do not require thatL is finite. The†-formulae we con-
sider in the paper are mostly finite. However, for technical reasons, we prefer to keep to possibility of
considering infinite†-formulae. This will be useful in the proof of refutational completeness, in which
infinite †-formulae are constructed as “limits” of sequences of finite†-formulae (finite†-formulae can
easily be constructed and handled by a computer, whereas handling infinite†-formulae would require
some mechanism to denote them symbolically).

Given a†-formulaC = (L,M, α, δ, µ), we define inductively a relation�C on nodes inL as follows:
γ �C β iff either γ = β or there existsC ∈ δ(β) andζ ∈ C s.t.γ �C ζ. Intuitively, γ �C β holds if the
nodeγ occurs behind the nodeβ.

A †-formulaC is said to beacyclicif ≺C is an ordering.In the rest of the paper we assume (without
explicitly mentioning it) that all the considered †-formulae are acyclic.

Given a†-formulaC = (L,M, α, δ, µ) we denote byvar(C) the set of variables occurring inC, i.e.
the set of variables occurring in a literalµ(β), for someβ ∈M. C is said to begroundif var(C) = ∅.

Two †-formulaeCi = (Li,Mi, αi, δi, µi) for i = 1, 2 are said to bedisjoint iff L1∩L2 = ∅. Clearly,
two given†-formulae can always be made disjoint by renaming (automatically) the nodes occurring in
one of them in order to satisfy the desired properties (as we shall see, this preserves the semantics of the
†-formulae).

If C = (L,M, α, δ, µ) is a†-formula, andσ is a substitution, thenCσ denotes the†-formula:

(L,M, α, δ, µσ),

where for anyβ ∈M, µσ(β) def= µ(β)σ.
Let C = (L,M, α, δ, µ) be a †-formula. For anyβ ∈ L, we denote byC|β the †-formula

(L,M, β, δ, µ). C|β can be seen as a sub-†-formula in C, starting at the “root”β instead ofα. C|β is
said to be asub-†-formulaof C.

The notationC|β can be extended to the case in whichβ denotes aL-clause or a set ofL-clauses.
In this case we add a new (i.e. not occurring inC) nodeα′ denoting the clauseβ. More precisely, if
C = (L,M, α, δ, µ) is a†-formula andD is aL-clause, thenC|D denotes the†-formula:

(L ∪ {α′},M, α′, δ ∪ {α′ 7→ {D}, µ),

whereα′ is a node not occurring inL. If S is a set ofL-clauses, thenC|S denotes the†-formula:

(L ∪ {α′},M, α′, δ ∪ {α′ 7→ S, µ),

whereα′ is a node not occurring inL.
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Example 2.2. For instance, ifC is the†-formula of Example 2.1, thenC|β denotes the†-formulaC′ =
({α, β, γ, λ, ζ}, {γ, λ, ζ}, β, δ, µ).

C|α∨β denotes a†-formula of the formC′′ = ({α, β, γ, λ, ζ, ε}, {γ, λ, ζ}, ε, δ′, µ) where:

δ′ = {ε 7→ {α ∨ β}, α 7→ {β ∨ γ}, β 7→ {λ, ζ}}.

As we shall see,C′′ is equivalent to:

(p(f(x)) ∧ p(g(x))) ∨ ¬p(x) ∨ (p(f(x)) ∧ p(g(x))).

2.3. Semantics of†-Formulae

From †-Formulae to Clause Sets

Any †-formulaC = (L,M, α, δ, µ) can be associated to a set of clausesS(C) defined as follows:

Definition 2.2. (Semantics of†-Formulae) LetC be an†-formula.S(C) is the smallest set of clauses s.t.:

• If α ∈M, thenS(C) def= {µ(α)}.

• If α 6∈ M and(α1 ∨ . . . ∨ αk) ∈ δ(α) and for anyi ∈ [1..n], Ci ∈ S(C|αi
) thenC1 ∨ . . . ∨ Cn ∈

S(C).

An interpretationI satisfiesa †-formulaC (writtenI |= C) iff I |= S(C).

Note that this definition does not require thatC is finite. The setS(C) is exactly the set of clauses
obtained fromC by transformation into clausal form, if a “naive” transformation is used.

It is easy to see that standard clauses can be seen as a particular case of†-formulae. More precisely,
a clauseL1 ∨ . . . ∨ Ln is equivalent to the†-formula:

({α, β1, . . . , βn}, {β1, . . . , βn}, α, {α 7→ {(β1 ∨ . . . ∨ βn)}}, {βi 7→ Li | i ∈ [1..n]}).

Similarly, if S = {C1, . . . , Cn} is a set of clauses whereCi
def=

∨ki
j=1 Lij (whereLij are literals and

ki ∈ N), thenS is equivalent to the†-formula:

(L,M, α, δ, µ)

where:

• L def= {α} ∪ {βij | i ∈ [1..n], j ∈ [1..ki]}.

• M def= L \ {α}.

• δ(α) def= {
∨ki

i=1 βij | i ∈ [1..n]}.

• µ(βij)
def= Lij , for anyi ∈ [1..n], j ∈ [1..ki].
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Thus†-formulae denote uniformly clauses and sets of clauses.
We write C ≡ C′ if C, C′ are logically equivalent (i.e. ifS(C) ≡ S(C′)). We write C ∼ C′ iff

S(C) = S(C′) (this implies thatC ≡ C′ but the converse does not hold).
We denote by> the †-formula ({α}, ∅, α, α 7→ ∅, ∅) and by⊥ the †-formula ({α}, ∅, α, α 7→

{�}, ∅). Obviously we haveS(>) = ∅ (> is valid) andS(⊥) = {�} (⊥ is unsatisfiable).

Example 2.3. Let C def= {L,M, α, δ, µ} be a†-formula where:

• L def= {α, β1, β2, β3, β, γ1, γ2, γ}.

• M def= {β1, β2, β3, γ1, γ2}.

• δ(α) def= {β ∨ γ}, δ(β) def= {β1, β2, β3}, δ(γ)
def= {γ1, γ2}.

• µ(βi)
def= pi for anyi = 1, 2, 3, andµ(γj)

def= qj for anyj = 1, 2.

The sets{β1, β2, β3} and {γ1, γ2} essentially represent conjunctions. It is easy to see thatC is
equivalent to the following clause set:

p1 ∨ q1
p2 ∨ q1
p3 ∨ q1
p1 ∨ q2
p2 ∨ q2
p3 ∨ q2

Example 2.4. Let C def= {{α, β, β′, γ, γ′, λ}, {β′, γ′, λ}, α, δ, µ} be a†-formula where:

• δ
def= {α 7→ {β ∨ γ}, β 7→ {β′, λ}, γ 7→ {γ′, λ}}.

• µ
def= {β′ 7→ a, γ′ 7→ b, λ 7→ c}.

C is equivalent to the following clause set:

{a ∨ b, a ∨ c, c ∨ b, c ∨ c}.

The literalc corresponding to the nodeλ is shared inside the formulaea ∧ c andb ∧ c corresponding to
β andγ respectively.

Clearly the size ofS(C) may be exponential w.r.t. the size ofC, as evidenced by the following:

Example 2.5. Let Cn = (Ln,Mn, α, δn, µn) be a sequence of†-formulae defined as follows:

• Ln = {α, α1, . . . , αn, β1, . . . , βn, γ1, . . . , γn}.

• Mn = {β1, . . . , βn, γ1, . . . , γn}.
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• δ(α) = {α1 ∨ . . . ∨ αn}, δ(αi) = {βi, γi} for i = 1, . . . , n.

• µ(βi) = p1
i , µ(γi) = p2

i for i = 1, . . . , n.

The size ofCn is linear w.r.t.n, butS(Cn) = {pii
1 ∨ . . . ∨ pin

n | ∀j ∈ [1..n], ij ∈ {1, 2}} contains2n

distinct clauses.

If δ1, δ2 are two functions defined on two disjoint domainsL1,L2 respectively, thenδ1 ∪ δ2 denotes
the function defined on the domainL1 ∪ L2 as follows:(δ1 ∪ δ2)(α) def= δi(α) if α ∈ Li.

If δ is a function defined onL thenδ{α 7→ S} is the functionδ′ defined onL ∪ {α} as follows:
δ′(β) def= δ(β) if β 6= α andδ′(α) def= S (we may haveα ∈ L or α 6∈ L).

2.4. A Linear Notation for †-Formulae

The above definition is suitable for mathematical definitions and proofs, but it is not very convenient to
use in practice. For the sake of conciseness and readability we introduce a more readable notation for
denoting†-formulae. This notation is very close to the one usually used to denote term-graphs [3] for
instance.

We write a†-formula as a usual (quantifier-free) formula in negation normal form, constructed on a
set of literals using the connectives∨ and∧. For instance, the†-formula of Example 2.3 can be denoted
by the formula

(p1 ∧ p2 ∧ p3) ∨ (q1 ∧ q2).
In order to express sharing, we associate aname(i.e. a node) to some of the subformulae. This is

be done by prefixing the corresponding subformula by the node, as follows:α:(β1:a ∨ β2:b). These
nodes can be reused afterwards, in order to avoid duplicating the considered subformula. For instance
α:(β:a∨β) denote the formula(a∨a), where the two occurrences ofa are shared. Unnamed subformula
may be implicitly associated to arbitrary, pairwise different, nodes.

The†-formula in Example 2.4 is denoted by

(a ∧ λ:c) ∨ (b ∧ λ).

The definition ofλ is given only once and it can be reused as many times as needed.
This notation is obviously much more readable then the previous one, hence will be used in the

forthcoming examples.
Formally,†-formulae can be inductively constructed as follows. Ifl is a literal, then we also denote

by l the†-formula
({α}, {α}, α, ∅, {α 7→ l})

whereα is a arbitrarily chosen node.
If C = (L,M, α, δ, µ) is a†-formula andβ 6∈ L, thenβ:C denotes the†-formula

(L ∪ {β},M∪ {β}, β, δ ∪ {β 7→ α}, µ).

Finally, if Ci = (Li,L′i, αi, δi, µi) for i = 1, 2 are two disjoint†-formulae, thenC1∨C2 (resp.C1∧C2)
denote the†-formula

(L1 ∪ L2 ∪ {α},L′1 ∪ L′2, α, δ1 ∪ δ2 ∪ {α 7→ S})
whereS = {α1 ∨ α2} (respS = {α1, α2}) andα is a new node not occurring inL1,L2.
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2.5. Transforming †-Formulae

In this section, we introduce some basic transformations operating on†-formulae. These definitions
provide useful mathematical tools for handling†-formulae, which will serve as a basis for defining the
inference and simplification rules of Section 3 and for proving their soundness.

2.5.1. Replacement of†-Formulae

The first definition allows one to replace a sub-†-formula occurring in a given†-formula C by a new
†-formula.

Definition 2.3. (Replacement) LetC = (L,M, α, δ, µ) andC′ = (L′,M′, α′, δ′, µ′) be two disjoint
†-formulae. Letβ ∈ L. We denote byC[C′]β the†-formula

(L ∪ L′, (M∪M′) \ {β}, α, (δ ∪ δ′){β 7→ α′}, µ ∪ µ′}.

Note thatC[C′]β is an acylic†-formula sinceC, C′ are acyclic and sinceL andL′ are disjoint.
If C, C′ are not disjoint, thenC[C′]β denotes the†-formulaC[C′′]β , whereC′′ is an arbitrary relabeling

of C′, disjoint fromC.

For instance,(a ∨ (α:b ∧ c))[¬c ∧ d]α = a ∨ (α:(¬c ∧ d) ∧ c).

Lemma 2.1. Let C, C′ be two†-formulae. Letβ be a node occurring inC and letD def= C[C′]β.
Let I be an interpretation such thatI |= C and for any ground substitutionσ, eitherI 6|= C|βσ or

I |= C′σ. ThenI |= D.

Proof:
The proof follows from the fact that†-formulae denote formulae that are essentially monotone, in that
negations only appear on the atomic subformulae. More formally, letC = (L,M, α, δ, µ). Let σ be a
ground substitution. LetI be an interpretation s.t. eitherI 6|= C|βσ or I |= C′σ. Let γ ∈ L. We prove,
by induction on�C , that if I |= C|γσ andγ �C β thenI |= D|γσ (we obtain the desired result for
α = γ, since ifα 6�C β then obviouslyS(C) does not depend onβ, thusC ≡ D).

• Assume thatγ = β. ThenD|γ ≡ C′. If I |= C|γσ we haveI |= C|βσ henceI |= C′σ and
I |= D|γσ.

• Assume thatγ �C β. LetD ∈ S(D|γ). By definitionD is eitherµ(γ) or of the formD1∨ . . .∨Dn

whereδ(γ) contains a clauseα1 ∨ . . . ∨ αn s.t. Di ∈ S(D|αi
) for any i ∈ [1..n]. If D = µ(γ)

thenD ∈ S(C|γ), thus ifI |= C|γσ we haveI |= Dσ. Otherwise, sinceI |= C|γσ, hence there
existsi ∈ [1..n] s.t. I |= C|αi

σ. By the induction hypothesis this implies thatI |= D|αi
σ. Thus

I |= Diσ andI |= Dσ.
ut
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2.5.2. Insertion of†-Formulae

The following notation allows one to insert a clause or a set of clauses at some specific node in a†-
formula. The difference with the previous notation is that the clauses corresponding to the node in the
initial †-formula are preserved instead of being deleted.

Let C, C′ be disjoint†-formulae. Letβ be a node inC.
We denote byC〈C′〉β the†-formula:

C[C|β ∧ C′]β .
For instance,(a ∨ (α:b ∧ c))〈¬c ∧ d〉α = a ∨ (α:(b ∧ ¬c ∧ d) ∧ c).

Lemma 2.2. Let C, C′ be two†-formulae. Letβ be a node inC. Let I be an interpretation s.t. for any
ground substitutionσ, eitherI 6|= C|βσ or I |= C′σ. ThenI |= Cσ iff I |= C〈C′〉βσ.

Proof:
The proof follows from Lemma 2.1. Indeed, we have eitherI 6|= C|βσ or I |= C|βσ ∧ C′σ. ut

2.6. Weakening

The following notation allows one to delete, in a given†-formula, the clauses not containing a given
literal.

Let C = (L,M, α, δ, µ) be a†-formula. Letβ1, β2 be two nodes inL. We writeβ1 ./C β2 if there
existsλ �C α andζ1 ∨ ζ2 ∨ C ∈ δ(λ) s.t. ζ1 6= ζ2 andβi �C ζi for i = 1, 2. Informally β1 ./C β2 iff
S(C) contains a clause of the formC1 ∨ C2 ∨D, whereCi ∈ S(C|βi

).
Let β ∈ M. We denote bywβ(C) the†-formula obtained by replacing by> each nodeγ ∈ L s.t.

γ 6./C β.
Clearly,S(wβ(C)) contains all the clauses inS(C) that containµ(β). However, not all the clauses in

wβ(C) containµ(β).

Proposition 2.1. Let C be a†-formula. LetD = wβ(C). ThenS(D) ⊆ S(C).

Proof:
Immediate, sinceD is obtained fromC by replacing some of the nodes bytrue. ut

Example 2.6. Let C be the†-formula (in linear notation):(α:p ∧ β:q) ∨ (γ:r ∧ ζ:s). We haveα ./C γ
andα ./C ζ. Butα 6./C β. Thuswα(C) = (α:p ∧ >) ∨ (γ:r ∧ ζ:s) ≡ α:p ∨ (γ:r ∧ ζ:s).

3. The†-Resolution Calculus

We are now in position to define our extended resolution calculus. We adapt existing rules (resolution,
factorization and usual simplification rules such as subsumption) in order to handle†-formulae, and we
introduce some essentially new simplification rules, that are specific to†-formulae.

3.1. Simplification rules

First, we introduce some simplification rules which are useful for reducing the size of the†-formulae.
We shall prove that these rules preserve the semantics of the considered†-formulae.
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3.1.1. Reduction

The first simplification rule allows one to remove useless transitions1, i.e. transitions of the formγ 7→
{C}, whereγ is a node andC a Λ-clause. Such transitions can easily be discarded becauseγ can be
directly replaced byC (this is possible because this does not increase the number of clauses occurring at
each node).

For instance, the†-formula

C = (α:(β:a ∨ γ:b) ∨ c) ∧ (α ∨ d),

can be reduced to:
C = (β:a ∨ γ:b ∨ c) ∧ (β:a ∨ γ:b ∨ d).

The nodeα is useless.
We need to introduce a notation. Letσ be a function fromΛ to the set ofΛ-clauses.σ is extended to

operate onΛ-clauses and sets ofΛ-clauses using the relations:σ(L1∨ . . .∨Ln)σ def= σ(L1)∨ . . .∨σ(Ln)
andσ(S) def= {Cσ | C ∈ S}.

If δ is a partial function fromΛ to sets ofΛ-clauses,σ(δ) denotes the function defined as follows:
σ(δ)(λ) def= σ(δ(λ)).

The reduction rule is defined as follows:

(L ∪ {γ},M, α, δ ∪ {γ 7→ {C}}, µ)

(L,M\ {γ}, σ(α), σ(δ), µ)

whereσ = {γ 7→ C} and eitherα 6= γ or C is a unit clause2.

Proposition 3.1. Let C be a†-formula and letC′ be a†-formula obtained by applying the reduction rule
onC. S(C) = S(C′).

Proof:
Let C = (L ∪ {γ},M, α, δ ∪ {γ 7→ {D}}, µ} andC′ = (L,M\ {γ}, σ(α), σ(δ), µ) whereσ = {α 7→
D}.

We prove, by induction on≺C , that for anyλ ∈ L, S(C|λ) = S(C′|σ(λ)).
If λ = γ, then by definition since(δ ∪ {γ 7→ {D}})(γ) = {D}, C ∈ S(C|λ) iff one of the following

holds:

• Eitherγ ∈M andC = µ(γ).

• OrC ∈ S(C|D).

Sinceγ ∈ dom(δ) we haveγ 6∈ M. Hence we haveC ∈ S(C|D). Thus we haveS(C|λ) = S(C|D). By
the induction hypothesis, we haveS(C|D) = S(C′|σ(D)) = S(C′|D) (for anyβ ∈ D, sinceβ ≺C γ, we
haveβ 6= γ). Sinceσ(γ) = D this implies thatS(C′|σ(γ)) = S(C|γ).

1Thetransition functionis the functionδ mapping nodes to sets ofL-clauses, as defined in Definition 2.1.
2If C is not a unit clause andα = γ thenγ cannot be eliminated because it is the root node. IfC is unit andα = γ then the
(unique) node inC becomes the new root node.
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Now assume thatλ 6= γ. Thenσ(λ) = λ. C ∈ S(C|λ) iff either C = µ(λ) or C = C1 ∨ . . . ∨ Ck

where(α1 ∨ . . . αk) ∈ δ(λ) and for anyi ∈ [1..k], Ci ∈ S(C|αi
). By the induction hypothesis, this

last condition is equivalent to:Ci ∈ S(C′|σ(αi)). But σ(δ)(λ) = σ(α1) ∨ . . . σ(αk) ∈ σ(δ)(λ) iff
α1 ∨ . . . ∨ αk ∈ δ(λ), thusC ∈ S(C|λ) iff C ∈ S(C′|σ(λ)). ut

3.1.2. Sharing

The above rule allows one to merge identical nodes (i.e. nodes corresponding to the same literal).

(L ∪ {γ},M, α, δ, µ)

(L,M\ {γ}, σ(α), σ(δ), µ)

If σ = {γ 7→ β} andγ, β ∈M andµ(γ) = µ(β).

For instance, the†-formula(a∧b)∨(b∧c)∧(a∧c) can be reduced to(α:a∧β:b)∨(β∧ζ:c)∨(α∧ζ).

Proposition 3.2. Let C be a†-formula and letC′ be a†-formula obtained by applying the sharing rule on
C. S(C) = S(C′).

Proof:
The application conditions on the rule ensures thatS(C|γ) = S(C|β) (sinceµ(γ) = µ(β)). Then it is
easy to prove, by a straightforward induction on≺C (similar to the one of the proof of Proposition 3.1),
that we haveS(C|λ) = S(C′|λ), for any nodeλ. ut

3.1.3. Merging

The next rule allows one to reuse existing nodes when possible for denoting clause sets occurring in a
given†-formula. This avoids duplication of information.

(L,M, α, δ ∪ {γ 7→ S ∪ S1, γ
′ 7→ S ∪ S2}, µ)

(L ∪ {γ′′},M, α, δ ∪ {γ 7→ {γ′′} ∪ S1, γ
′ 7→ {γ′′} ∪ S2, γ

′′ 7→ S}, µ)

whereγ′′ is a node not occurring inL.

For instance the†-formula(α:a∧β:b∧ c)∨ δ:(α∧β) can be transformed into(δ∧ c)∨ δ:(α:a∧β:b).

Proposition 3.3. Let C be a†-formula and letC′ be a†-formula obtained by applying the merging rule
onC. S(C) = S(C′).

Proof:
C andC′ are respectively of the form:C = (L,M, α, δ, µ} andC′ = (L ∪ {γ′′},M, α, δ′, µ) where
δ(γ) = S ∪ S1, δ(γ′) = S ∪ S2, δ′(γ) = {γ′′} ∪ S1, δ′(γ) = {γ′′} ∪ S2, δ′(γ′′) = S. LetC be a clause.
C occurs inC|γ iff there exists a clauseD ∈ δ(γ) s.t. C ∈ S(C|D). D ∈ δ(γ) iff either D ∈ S, or
D ∈ S1. By definition, sinceδ, δ′ only differ onγ, γ′, γ′′, andC is acyclic, for any clauseD ∈ S∪S1 we
haveC|D = C′|D. ThusS(C|S) = S(C′|S) = S(C′|γ′′). MoreoverS(C|S1

) = S(C′|S1
). HenceC|γ = C′|γ .

Thus, according to Lemma 2.1,C|γ can be replaced byC′|γ . The same holds forγ′. ut
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3.1.4. Elimination

The next rule allows one to eliminate useless nodes (i.e. nodes corresponding to empty clause sets).

(L ∪ {β},M, α, δ ∪ {β 7→ ∅}, µ)

(L,M, α, δ′, µ)

If δ′(λ) def= {C | C ∈ δ(λ), β 6∈ C}.

For instance, the†-formulaa∨ [b∧ (c∨>)] is reducible toa∨ b. Indeed,c∨> is reducible to>, thus
b ∧ (c ∨ >) is reducible tob.

Proposition 3.4. Let C be a†-formula and letC′ be a†-formula obtained by applying the elimination
rule onC. S(C) = S(C′).

Proof:
The application conditions on the rule ensures thatS(C|β) = ∅ (sinceδ(β) = ∅). Thus if aL-clause
α1 ∨ . . .∨αk containsβ, the set of clauses of the formC1 ∨ . . .∨Ck s.t.Ci ∈ S(C|αi

) for anyi ∈ [1..n]
must be empty. Hence removing such clauses from theL-clause setsδ(λ) does not change the obtained
clause set. ut

3.1.5. Internal Subsumption

The next rule is more complicated because it affects the clause setS(C) corresponding to the†-formula
C at hand. The idea is to remove redundant (i.e. subsumed)L-clauses occurring in one of the clause sets
δ(λ), whereλ is a node inC. To this purpose, we extend the usual notion of subsumption to†-formulae.

From a theoretical point of view we could define the subsumption relation as follows:C subsumesC′
iff S(C) subsumesS(C′). But this definition is not very practical, because it would urge us to explicitly
compute the setsS(C) andS(C′) for checking subsumption. Since these sets are exponentially bigger
thanC andC′ this would be highly inefficient (and all the advantages of using†-formulae would be lost).
Thus we introduce another (stronger) definition.

Let S, S′ be two sets ofΛ-clauses. We writeS 4sub S′ (S subsumesS′) iff for any clauseC ∈ S′,
there exists a clauseC ′ ∈ S s.t.C ′ ⊆ C.

Definition 3.1. (†-Subsumption) LetC = (L,M, α, δ, µ) andC′ = (L′,M′, α′, δ′, µ′).
We writeC 4subD (C †-subsumesD) iff for any β ∈ L′ one of the following conditions hold:

• δ(β) = {�}.

• δ′(β) = ∅.

• β ∈M′ β ∈M andµ(β) = µ′(β).

• β 6∈ M′, β 6∈ M andδ(β) 4sub δ′(β).

Proposition 3.5. If C 4subD thenS(C) 4sub S(D).
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Proof:
This is an immediate consequence of the definition ofS(C). ut

According to Proposition 3.5, ifC is a†-formula, andD ∧ D′ is a sub-†-formula occurring inC s.t.
D 4sub D′ then we haveS(D ∧ D′) = S(D) ∪ S(D′) ≡ S(D) (sinceS(D) 4sub S(D′)). ThusD′ is
redundant and can be eliminated. This is the purpose of the following rule. It also takes into account
the fact that some of the variables inD may be instantiated, i.e. one must compute a substitutionσ s.t.
Dσ 4subD′. However, an important difference with the usual case is that some of the variables inD may
occur in the context in whichD ∧D′ occurs. These variables cannot be instantiated during subsumption
tests, because their values depend on the context. Assume for instance thatC = p(x) ∨ (q(x) ∧ q(a)).
Clearly there exists a substitutionσ = {x 7→ a} s.t. q(x)σ 4sub q(a). However,q(a) is not redundant
becauseσ affects a variablex occurring in the context ofq(x) ∧ q(a) (namely inp(x)). Removingq(a)
from the above†-formula would be clearly incorrect (i.e. would change the semantics of the†-formula).
In contrast, if we consider the†-formulap(x)∨ (q(y)∨ q(a)) thenq(a) is redundant and can be removed
because the substitutiony 7→ a does not affect the variablex.

The next definition formalizes this idea: LetE be a set of variables (possibly empty). We write
C 4sub

E D iff there exists a substitutionσ s.t. dom(σ) ∩ E = ∅ andCσ 4subD.
Let C = (L,M, α, δ, µ) be a†-formula. Ifβ is aL-clause, we denote byCVβ(C) the set of variables

x s.t.x occurs in a literalµ(β′) for someβ′ ∈M andβ′ ./C β.
Intuitively CVβ(C) denotes the set of variables occurring in the “context” ofC|β .
The internal subsumption rule is defined as follows:

(L,M, α, δ ∪ {β 7→ S ∪ {C}}, µ)

(L,M, α, δ ∪ {β 7→ S}, µ)

If S contains a clauseD s.t.C|D 4sub
E C|C , whereE = CVβ(C).

Lemma 3.1. Let C be a†-formula and letC′ be a†-formula obtained by applying the subsumption rule
onC. S(C) ≡ S(C′).

Proof:

We have obviouslyS(C′) ⊆ S(C) (since the rule only deletes clauses in the clause set corresponding
to the†-formulaβ). ThusC |= C′.

Now, letI be a model ofC′. Let θ be a ground substitution of the variables inC. Let γ = σθ.
We haveI |= C′γ. Assume thatI |= C′|βγ. ThenI |= C′|Dγ = C|Dγ, hence by Proposition 3.5, we

haveI |= C|Cθ.
Thus by Lemma 2.1, we haveI |= C′γ〈C|Cθ〉β . But by definition ofCVβ(C), all the variables from

dom(σ) occurring inC must occur inC|β. ThusC′γ〈C|Cθ〉β = C′θ〈C|Cθ〉β .
HenceI |= C′θ〈C|Cθ〉β = Cθ. ut

We have the following:

Proposition 3.6. If � ∈ S(C) thenC can be reduced to⊥ by the internal subsumption rule.

Proof:
The proof is by a straightforward induction on≺C . ut
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3.2. Unit Simplification

The idea of the last simplification rule is to use the unit clauses occurring in a given†-formulaC in order
to simplify C. If a literal l holds, thenφ is equivalent toφ{l → true}. Thusl ∧ φ ≡ l ∧ φ′ whereφ′ is
obtained fromφ by replacing each occurrence ofl by> and each occurrence oflc by⊥. This idea can
be formalized by the following rule:

C : (L,M, α, δ, µ)

C[µ(β) ∧ C|λ[⊥]γ [>]β]λ

If λ ∈ L, andδ(λ) contains a clause{β}, whereβ ∈M andµ(γ) = µ(β)c.

For instance,α : a ∧ ((α ∧ b) ∨ c ∨ ¬a) can be reduced toα:a ∧ (b ∨ c).

Proposition 3.7. Let C be a†-formula. LetC′ be a†-formula obtained by applying the unit simplifcation
rule onC. C′ ≡ C.

Proof:
The proof follows immediately from Lemma 2.1 and from the above remarks (we haveC|λ |= l hence
C|λ ≡ l ∧ C|λ[⊥]γ [>]β). ut

3.3. Reduced†-Formulae

Lemma 3.2. LetC be a†-formula. The nondeterministic application of the simplification rule terminates
onC.

Proof:
Let C = (L,M, α, δ, µ). It is easy to see that all the simplification rulesexcept the unit simplification
rule strictly decrease the size of the considered†-formula3.

The unit simplification rule decreases thenumber of occurrencesof the literals inC (i.e. the number
of distinct paths – or positions – fromα to the considered literals). It is clear that no simplification rule
can increase this number. ut

Definition 3.2. (Reduced†-Formulae) A†-formula is said to bereducediff it is irreducible by the sim-
plification rules. The†-formula obtained from a†-formula C by nondeterministic application of the
simplification rules (without the unit simplification rule) is called thereduced formof C.

3.4. Inference Rules

In this section we extend the usual inference rules, namely the resolution and factorization rules, in order
to handle†-formulae instead of clauses.

3This is not the case of the unit simplification rule, due to the fact that the nodes inC|λ can occur elsewhere inC. Thus the
application of the rule mayincreasethe number of nodes, by “duplicating” them.
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3.4.1. †-Resolution

Assume we want to apply the resolution rule between two†-formulaeD andD′ on two literalsl, lc

occurring respectively at two nodesβ, β′. We proceed as follows. First we remove fromD′ (some of)
the clauses not containinglc (using the operatorD′ → wβ′(D′) defined above) and we replacelc by⊥.
This yields a new†-formulaD′′. Then we insertD′′ at the nodeβ in D. All the clauses added intoS(D)
during this process are resolvents of clauses initially occurring inS(D) andS(D′) respectively.

Clearly, one application of the†-resolution rule corresponds to several applications of the usual
resolution rule. For instance given the†-formulae(a∧ b)∨ c and¬c∨ (a′ ∧ b′) we derive:(a∧ b)∨ (c∧
a′∧b′). The set of clauses corresponding to the initial†-formulae are{a∨c, b∨c} and{¬c∨a′,¬c∨b′}
respectively, and the set of clauses corresponding to the obtained†-formula is{a ∨ c, b ∨ c, a ∨ a′, a ∨
b′, b ∨ a′, b ∨ b′}. Note that with our technique, this clause set is obtained in only one resolution step,
whereas4 steps are needed if ordinary resolution is used.

Definition 3.3 above formalizes this idea. The resolution is “internal” in the sense that it applies to
a pair of†-formulae occurring at a nodeλ inside a given†-formula. This is due to the fact that in our
approach, a set of†-formulae is itself denoted by a†-formula.

Naturally, we also need to take into account the fact that some of the variables can be instantiated
during the process (using unification). As for the subsumption rule, we have to ensure that the variables
occurring in the context are not instantiated during the process. If it is the case then we need to apply
the resolution rule at a higher level in the†-formula – in the worst case at the root position (in which
the context is empty). As for the usual resolution rule, some of the variables (those not occurring in the
context) are renamed prior to the application of the rule in order to avoid conflicts on the variable names
(e. g. if we try to apply the resolution rule onp(x) ∧ ¬p(f(x))).

We need to introduce some further notations. LetE be a set of variables. A substitutionσ is said to
be aE-unifier of two literal l, l′ iff we havelσ = l′σ andxσ = x for anyx ∈ E. As usual, two literals
l, l′ E-unifiable have a most generalE-unifier (unique up to a renaming).

A E-renamingis a bijective substitutionσ s.t.xσ ∈ V for anyx ∈ V andxσ = x if x ∈ E.
A †-formulaD is said to be aE-renamingof C iff there exists aE-renamingσ s.t.D = Cσ.

Definition 3.3. (†-Resolution) LetC be a†-formula. Letλ be a node inC and letC,C ′ be twoΛ-clauses
in δ(λ).

Let D,D′ be twoCVλ(C)-renamings ofC|C andC|C′ respectively, by fresh, pairwise distinct, vari-
ables, not occurring inC.

Let l, l′ be two literals s.t. there existsβ, β′ occurring inD,D′ respectively s.t.µ′(β) = l and
µ′′(β′) = l′.

Let σ be the most generalCVλ(C)-unifier of lc, l′.
The†-formula

R = C〈D〈wβ′(D′)[⊥]β′〉βσ〉λ
is called aninternal †-resolventof C (w.r.t. the pair of nodesβ, β′ and the unifying substitutionσ).

If the reduced form ofD〈wβ′(D′)[⊥]β′〉βσ is subsumed byC|λ, then this application of the resolution
rule is said to beredundant(in this case the obtained†-formula can be reduced to the original one by
internal subsumption).

It is worthwhile to mention that ifσ = id, then the obtained resolventD〈wβ′(D′)[⊥]β′〉βσ subsumes
the†-formulaC|C (thusC|C can be removed).
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The reader should note that the†-resolution rule, in contrast to the usual resolution rule, is dissym-
metric: the resolvent ofC andC′ is distinct from the resolvent ofC′ andC. For instance the resolvent of
p ∨ q and¬q ∨ r is p ∨ (q ∧ r), and the resolvent of¬q ∨ r andp ∨ q is (¬q ∧ p) ∨ q. As we shall see,
only one of these two resolvents is needed for completeness.

Lemma 3.3. Let C be a†-formula. LetR be a resolvent ofC, w.r.t. two nodesβ, β′ and a unifying
substitutionσ. R ≡ C.

Proof:
Obviously, we haveS(C) ⊆ S(R) henceC is a logical consequence ofR.

Let I be an interpretation satisfyingC.
Let C′ = C〈D ∧ D′〉λσ. LetC ∈ S(C′). If C is not an instance of a clause inS(C), thenC is of the

form C1σ ∨ C2σ, whereC2σ ∈ S(D ∧ D′) and for anyC3 ∈ S(C|λ) we haveC1 ∨ C3 ∈ S(C). Since
σ is aCVλ(C) unifier, we haveC1σ = C1. Let us assume, w.l.o.g., thatC2 ∈ S(D) (the case where
C2 ∈ S(D′) is similar). By definition there exists a substitutionθ s.t. C = Dθ. Moreover, sinceθ is a
CVλ(C)-renaming, we haveC1θ = C1. We haveC2 ∈ S(D), thusC2θ ∈ S(C). ThusC1 ∨C2θ ∈ S(C).
ButC1 ∨C2θ = (C1 ∨C2)θ 4sub (C1 ∨C3)σ (sinceθ is a renaming). HenceC′ is a logical consequence
of C andI |= C′.

R is of the form
C〈D〈wβ′(D′)[⊥]β′〉βσ〉λ

whereD,D′ are defined as in Definition 3.3.
LetR′ = C′〈D〈wβ′(D′)[⊥]β′〉β〉λ. We haveS(R) ⊆ S(R′). We show thatI |= S(R′).
Let θ be an instance ofR′. We havelcθ = l′θ. Assume thatI |= D,D′.
Assume thatI |= lθ. Then by Proposition 2.1,I |= wβ′(D′). By Lemma 2.1, this implies that if

I |= wβ′(D′)[⊥]β′ .
Thus I |= lθ ⇒ I |= wβ′(D′)[⊥]β′ . But then by Lemma 2.2, this implies thatI |=

D〈wβ′(D′)[⊥]β′〉β .
ThusI |= D,D′ ⇒ I |= D〈wβ′(D′)[⊥]β′〉β.
By applying again Lemma 2.2 we conclude thatI |= R′. ut

Example 3.1. We consider the following†-formula.

C = p(x) ∨ λ:[(¬q(x, y) ∨ p(y)) ∧ (q(x, f(y)) ∨ (r(y) ∧ r(f(y))))].

We apply the resolution rule on the nodeλ, and the clauses¬q(x, y) ∨ r(y) andq(x, f(y)) ∨ (r(y) ∧
r(f(y))). First we compute twoCVλ(C)-renamings of these two clauses. We obtain¬q(x, y′) ∨ p(y′)
andq(x, f(y′′)) ∨ (r(y′′) ∧ r(f(y′′)). Note thatx is not renamed since this variable occurs inCVλ(C).
We unifyq(x, y′) andq(x, f(y′′) yielding the substitutionσ : {y′ 7→ f(y′′)}. Then we replace the literal
q(x, f(y′′)) in q(x, f(y′′)) ∨ (r(y′′) ∧ r(f(y′′)) by⊥ yielding r(y′′) ∧ r(f(y′′)). We insert the obtained
†-formula into¬q(x, y′) ∨ p(y′), at the node corresponding to the literal¬q(x, y′). This yields:

β:(¬q(x, y′) ∧ r(y′′) ∧ r(f(y′′)) ∨ p(y′)).

Finally we apply the substitutionσ and we insert the corresponding†-formula intoC at the nodeλ. This
yields:

C = p(x) ∨ λ : [(¬q(x, y) ∨ p(y)) ∧ (q(x, f(y)) ∨ (r(y) ∧ r(f(y)))) ∧ D]
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where
D = β:(¬q(x, f(y′′)) ∧ r(y′′) ∧ r(f(y′′))) ∨ p(f(y′′)).

Note that the rule would still be correct ifwβ′(D′) were replaced byD′ in the above definition. The
next example shows the interest of applying the operatorwβ′(D′).

Example 3.2. Let C = a∨β:b andC′ = (β′:¬b∨ a′)∧ c. Let us apply the†-resolution rule onC, C′. We
havewβ′(C′) = (β′:¬b∨a′). Thenwβ′(C′)[⊥]β′ if a′. Thus the obtained†-formula isC〈a′〉β = a∨(b∧a′).

If we replacewβ′(C′) byC′, then we obtaina∨(b∧a′∧c). The result is correct, but the corresponding
clause set contains a clausea ∨ c which is redundant (since the clausec already occurs in the clause set
corresponding toC′).

3.4.2. Ordering Restriction of†-Resolution

Restriction strategies are essential for the efficiency of inference systems. Ordered resolution aims at
reducing the search space (more precisely the branching factor) of the rule by preventing the application
of the resolution rule on literals that are non maximal in their parent clauses (according to some fixed
ordering< between literals). This principle can be extended to†-formulae. However, since a†-formula
corresponds to a set of clauses, the considered literalsl, l′ may be maximal in some of the clauses and
non maximal in the others. Thus, we need to delete from this set, the clauses in whichl (resp.l′) is non
maximalbeforeapplying the resolution rule. Since a given†-formula can yield an exponential number
of distinct clauses, it would be very inefficient to generate this set explicitly. The simplest solution is to
replace every literal greater thanl by true. More formally:

Let ≤ be an ordering on literals. Letl be a literal. LetC = (L,M, α, δ, µ) be a†-formula. We
denote byC|≤l (resp.C|<l) the†-formula(L ∪ {β → ∅ | β ∈ M′},M\M′, α, δ, µ′) whereM′ is the
set of nodesβ in M s.t.µ(β) > l (resp.µ(β) ≥ l) andµ′ is the restriction ofµ toM\M′.

Informally C|≤l is obtained fromC by replacing any literal greater thanl (according to the considered
ordering) bytrue. This is equivalent to deleting, in the clause set denoted by the†-formula C, all the
clauses containing a literal strictly greater thanl.

Note that we may haveM = M′ and in this caseC|≤l is equivalent to>.

Proposition 3.8. Let C be a†-formula and letl be a literal.S(C|≤l) ⊆ S(C). Moreover, for any clause
C ∈ S(C|≤l) and for anyl′ ∈ C, we havel′ 6≥ l.

Proof:
Immediate (by a straightforward induction on≺C). ut

We adapt Definition 3.3 in order to integrate ordering restrictions:

Definition 3.4. (Ordered†-Resolution) LetC be a†-formula. Letλ be a node inC and letC,C ′ be two
Λ-clauses inδ(λ).

LetD,D′ be twoCVλ(C)-renamings ofC|C andC|C′ respectively, by new variables, not occurring in
C.

Let l, l′ be two literals s.t. there existsβ, β′ occurring inD,D′ respectively s.t.µ′(β) = l and
µ′′(β′) = l′. Letσ be the most generalCVλ(C)-unifier of lc, l′.
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Let E = D|l≤and letE ′ = D′
|l≤.

The†-formula
C〈E〈wβ′(E ′)[⊥]β′〉βσ〉λ

is called aninternal≤-resolventof C (w.r.t. the pair of nodesβ, β′ and the unifying substitutionσ).

3.4.3. †-Factorization

The factorization rule can be seen as an extension of the sharing rule defined above, in which the instan-
tiation of variables is allowed. More precisely:

Definition 3.5. (†-Factorization) LetC = (L,M, α, δ, µ) be a†-formula. Letλ be a node inL. Let
C ∈ δ(λ). Letβ, β′ be two nodes occurring inC|C . Letσ be a most generalCVλ(C)-unifier ofµ(β) and
µ(β′) andδ(β) = δ(β′) = ∅.

Let C′ be a sharing ofCσ w.r.t. β, β′. ThenC〈C′〉λ is called afactor of C.

Example 3.3. Let C : p(b, x)∨ (q(x, y)∧p(y, a)). By unifyingp(b, x) andp(y, a) we get the†-formula:
C : α:p(b, a) ∨ (q(a, b) ∧ α).

We haveS(C) = {p(b, x) ∨ q(x, y), p(b, x) ∨ p(y, a)} andS(C) = {p(b, a) ∨ q(a, b), p(b, a)}.

Lemma 3.4. Let C be a†-formula and letC′ be a†-formula obtained fromC by †-factorization. Then
C′ ≡ C.

Proof:
The proof follows from Proposition 3.3. ut

4. Soundness and Refutational Completeness

4.1. A New Redundancy Criteria

In section 3 we proved that the inference and simplification rules preserve the semantics of the considered
†-formula. This entails soundness. Now, we prove that our method is refutationally complete. In fact
completeness as such is a rather trivial issue since the†-resolution rule simulates the usual resolution
rule: more precisely, any clause setS = {C1, . . . , Cn} can be represented by a†-formulaC = α:(C1 ∧
. . .∧Cn), and any application of the resolution rule on two clausesCi, Cj can be simulated by applying
the†-resolution rule on the root nodeα, using theΛ-clauses corresponding toCi andCj . Similarly, the
factorization rule may be simulated by the†-factorization rule.

However, this strategy is not very useful since it is equivalent to using ordinary resolution and all the
advantages of our techniques (i.e. the extensive use of structure sharing) are lost. Therefore, we prove
the refutational completeness of our calculus in a much stronger setting, using a more efficient strategy.
Namely:

• The simplification rules can be applied as soon as possible on the considered†-formula. In partic-
ular, identical sub-†-formulae should be merged when possible.
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• The resolution rule is systematically applied at the innermost position in the considered†-formula.
Thus resolution rule is applied at root position only if it is necessary. The following example
should clarify this point.

Consider the†-formulaα:(p(x) ∨ β:(q(y) ∧ ¬q(a)). The resolution can be applied on the literals
q(y) and¬q(a) yielding the empty clause. By applying the†-resolution rule on the†-formulaβ, we get:
α : (p(x) ∨ β : (q(y) ∧ ¬q(a) ∧ ⊥), i.e. (after simplification by internal subsumption):α : p(x).

However we could also in principle (according to Definition 3.3) apply the same rule on the root
†-formulaα instead ofβ. The reader can check that this yields the following†-formula:

α : [(p(x) ∨ β : (q(y) ∧ ¬q(a))) ∧ (p(x′) ∨ β′ : ((p(x′′) ∨ ⊥) ∧ ¬q(a))]

≡ α : [(p(x) ∨ β : (q(y) ∧ ¬q(a))) ∧ (p(x′) ∨ β′ : (p(x′′) ∧ ¬q(a))]

Clearly the first†-formula subsumes the second one. The second application of the rule is not only
much more complicated than the first one, but also useless.

This idea is formalized by the following:

Definition 4.1. (Usefulness) An application of the resolution rule on a†-formulaC, a nodeλ, two Λ-
clausesC,C ′, two nodesβ, β′ and a substitutionσ is said to beuselessiff C = C ′ and ifC is of the
formD ∨ λ′, whereλ′ ∈ Λ, andC|D contains no variable indom(σ).

Similarly, an application of the factorization rule on a†-formulaC, a nodeλ, a Λ-clauseC, and a
substitutionσ is said to beuselessiff C is of the formD∨λ′, whereλ′ ∈ Λ andC|D contains no variable
in dom(σ).

4.2. Derivations and Limits

We need to introduce some definitions.

Definition 4.2. (Derivations) Aderivation is a sequence(Ci)i∈I of †-formulae (with eitherI = N or
I = [0..n] for somen ∈ N) s.t. for anyi = I \ {0}, Ci is obtained fromCi−1 by applying the†-
resolution,†-factorization, unit simplification, reduction, merging, sharing, elimination or subsumption
rule.

Let (Ci)i∈I be a derivation, withCi = (Li,Mi, αi, δi, µi). By definition, we must haveαi = αj

for any i, j ∈ I (no rule can change the root node of the†-formula). Moreover, the rules only add new
nodes and modify the value ofδ (by removing or addingΛ-clauses), thus we haveµi(β) = µj(β) if
β ∈Mi,Mj . Letµ∞ =

⋃
i∈I µi.

A nodeλ is said to bepersistent, iff there existsk ∈ I s.t.λ ∈ Li for all i ∈ I s.t. i ≥ k. LetL∞ be
the set of persistent nodes.

Let λ be a persistent node. AnL∞-clauseC is said to bepersistentfor λ, iff there existsk ∈ I
s.t. C ∈ δi(λ) for any i ∈ I s.t. i ≥ k. We denote byδ∞(λ) the set of persistent clauses forλ. Let
M∞

def=
⋃

i∈I Mi.
We denote bylim(Ci)i∈I the†-formula: (L∞,M∞, δ∞, µ∞).
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4.3. Saturated†-Formulae

As usual, in order to ensure completeness, we need a notion of fairness:

Definition 4.3. (Fairness) A derivation(Ci)i∈I is said to befair if the following holds: if for some
i ∈ I, the resolution (resp. factorization) rule is applicable on a given nodeλ in Ci on twoΛ-clauses
C,C ′ ∈ δi(λ) (resp. on aΛ-clauseC), then:

• eitherλ is not persistent,

• orC,C ′ (resp.C) are not persistent forλ,

• or there existsj ≥ i s.t. j ∈ I and s.t. the application of the resolution (resp. factorization) rule
onλ,C,C ′ or λ,C ′, C (resp.λ,C) is redundant or useless forCj .

A †-formulaC is said to besaturatediff there is no non-redundant and non-useless application of the
resolution or factorization rules onC. The next lemma states a key property of saturated†-formulae.

Lemma 4.1. Any saturated†-formulaC s.t.S(C) does not contain� is satisfiable.

Proof:
Let C = (L,M, α, δ, µ) be a saturated†-formula. We show that for anyλ ∈ L, S = S(C|λ) is saturated
(in the usual sense, i.e. that any clause deducible fromS by resolution or factorization is subsumed by a
clause inS). The proof is by induction on the ordering≺C .

LetC1, C2 be two clauses inS(C). Assume that the resolution rule is applicable onC1, C2. W.l.o.g.
we assume thatCi = li ∨ C ′

i where there exists a m.g.u. ofl1, lc2 s.t. liσ is≤-maximal inCiσ.
By definition there exists twoΛ-clausesD1, D2 ∈ δ(α) s.t.Ci ∈ S(C|Di

) (for i = 1, 2).
Let β1, β2 be the nodes corresponding to the literalsl1, l2 respectively.
We haveµ(βi) = li. Thus the resolution rule applies on the nodesβ1, β2. Assume that this appli-

cation of the resolution rule is not useless. Then by definition sinceC is saturated the application of the
rule onC1, C2 or C2, C1 must be redundant. W.l.o.g. we assume that the application of the rule onC1, C2

is redundant (the proof forC2, C1 is similar). HenceC|λ subsumes the†-formula

R = E1〈wβ2(E2)[⊥]β2〉β1σ

whereDi is aCVλ(C)-renamings ofC|Di
respectively, by new variables, not occurring inC and where

Ei = Di|li≤.
Sinceli is maximal inCi andCi ∈ S(C|Di

), Ciσ occurs inS(Ei).
This implies thatS(wβ′(E2)[⊥]β′) containsC2 andS(E〈wβ′(E2)[⊥]β′〉β) containsC1 ∨ C2. Thus

S(R) contains a clauseC1σ ∨ C2σ.
Now assume that the application of the resolution rule is useless.
Then we must haveD1 = D2 andD1 = D ∨ γ, whereC|D contains no variable indom(σ) (in

particularl1, l2 cannot occur inC|D).
By definition,Ci is of the formE′

i ∨ E′′
i ∨ li, whereE′

i ∈ S(DiC|) andE′′
i ∨ li ∈ S(γC|). C|γ is

saturated, hence by the induction hypothesis,S(C|γ) is saturated. ThusS(C|γ) containsE′′
1σ ∨ E′′

2σ.
ThereforeS(C|λ) contains the clauseE′

1 ∨ E′′
1σ ∨ E′′

2σ, i.e.E′
1σ ∨ E′′

1σ ∨ E′′
2σ (sinceC|D contains

no variable indom(σ)). But this clause subsumesC ′
1σ ∨ C ′

2σ.
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The proof for the factorization rule is similar.
This implies thatS is saturated, hence by completeness of the (usual) resolution and factorization

rules,S is either satisfiable or contains�. ut

The next lemma shows that the limit operator introduced above preserves the semantics of the con-
sidered†-formulae, in the sense that all the non-persistent clauses are redundant.

Lemma 4.2. Let (Ci)i∈I be a fair derivation.S(C0) ≡ S(lim(Ci)i∈I).

Proof:
LetD = lim(Ci)i∈I We have shown thatS(D) is a logical consequence ofS(C0).

Now, letC be a clause inS(C0). For anyi ∈ I, Ci is of the form(Li,Mi, α, δi, µi). There exists a
clauseC ′ ∈ δ(α) s.t.C is subsumed by a clause inS(C0|C′).

It is well-known that4sub is a well-founded ordering on clause sets (up to a renaming, see for instance
[13]). But according to Lemma 3.1,C 4sub D implies S(C) 4sub S(D), thus4sub is a well-founded
ordering on†-formulae (up to renaming). LetC ′ be aΛ-clause and leti ∈ I s.t.C is subsumed byCi|C′

andC|C′ is minimal according to4sub.
Assume thatC ′ is not persistent. ThenC ′ must be deleted at some point. But this implies that there

exists a clauseD ∈ δ(α) andj ∈ I s.t. Cj |D 4sub Ci|C′ , which is impossible sinceCi|C′ would not be
subsumption-minimal.

ThusC ′ is persistent. HenceS(D|C′) ⊆ S(D). By definition,D|C′ is obtained fromCi|C′ by
reduction. HenceD|C′ 4sub Ci|C′ . ThusC is subsumed by a clause inS(D). ut

Lemma 4.3. Let (Ci)i∈I be a fair derivation.lim(Ci)i∈I is saturated.

Proof:
This follows immediately from the definition. ut

Theorem 4.1. (Soundness and Completeness) Let(Ci)i∈I be a fair derivation.C0 is unsatisfiable iff
there existsi ∈ I s.t.Ci ≡ ⊥.

Proof:
Assume that there existsi ∈ I s.t. Ci ≡ ⊥. ThenCi is unsatisfiable. By Lemma 3.3, 3.4, 3.1 and
Proposition 3.1, 3.3, 3.2, 3.4, 3.7, we haveC0 ≡ C1 ≡ . . . ≡ Ci. ThusC0 is unsatisfiable.

Assume thatC0 is unsatisfiable. Since(Ci)i∈I is fair, lim(Ci)i∈I is saturated by Lemma 4.3. By
Lemma 4.2,lim(Ci)i∈I is unsatisfiable. But then according to Lemma 4.1S(lim(Ci)i∈I) contains�. But
by definition any clause inS(lim(Cii∈I)) occurs inS(Ci) for somei ∈ I, thus there existsi ∈ I s.t.
� ∈ S(Ci). By Proposition 3.6,Ci can be reduced to⊥ by internal subsumption. ut

5. Polynomial Proof of the Pigeonhole Principle

In order to demonstrate the interest of the proposed calculus, we investigate its behavior on a rather
well-known (propositional) problem: thepigeonhole formula, denoted byPigHPbn, which states that
there is no injective function from a set ofn + 1 pigeons into a set ofn holes. It is well-known that
PigHPbn admits no polynomial proof in ordinary resolution [12]. We show that the†-resolution calculus



24 N. Peltier / A Resolution Calculus with Shared Literals

introduced in Section 3 refutesPigHPbn in a number of steps that is polynomial w.r.t. the number
of holes. This immediately implies that the standard resolution calculus cannot polynomially simulate
†-resolution.

The variable(i ∈ j) denotes the fact that pigeoni is in holej. We define the following propositional
clauses and clause sets:

• Pn(i) def=
∨n

j=1(i ∈ j) (pigeoni must be in some hole).

• Pn
def=

⋃n+1
i=1 {Pn(i)} (each pigeon must be in some hole).

• hn(i, j1, j2)
def= ¬(j1 ∈ i) ∨ ¬(j2 ∈ i) (holei cannot contain pigeonsj1 andj2).

• hn(i) def= {hn(i, j1, j2) | j1, j2 ∈ [1..n+ 1], j1 6= j2} (holei cannot contain two distinct pigeons).

• Hn
def=

⋃n
i=1 hn(i), (no hole contains two distinct pigeons).

The pigeonhole formula is the conjunction ofPn andHn:

PigHPbn
def= Pn ∪ Hn.

PigHPbn is a set of clauses, hence can be seen as a set of†-formulae (since clauses are particular
cases of†-formulae).

We shall construct a†-refutation ofPigHPbn whose number of steps is polynomial w.r.t.n.
If C is a clause andS a clause set,C ∨ S denotes the clause set{C ∨ D | D ∈ S}. Obviously,

card(C ∨ S) = card(S).
The following formulaT(k, k′, k′′) expresses the fact that the holes[k + 1..n] containat leastk′′

pigeons among the pigeons[k′..n+ 1].

T(k, k′, k′′) def=
∨

P⊆[k′..n+1],card(P )=k′′

∧
i∈P

(i ∈ [k + 1..n])

where the formula(i ∈ [k + 1..n]) expresses the fact that pigeoni must be in some hole between
[k + 1..n]:

(i ∈ [k + 1..n]) def=
n∨

j=k+1

(i ∈ j).

By convention,
∨

i∈P φi (resp.
∧

i∈∅ φi) is 0 (resp.1) if P is empty.
We have the following:

Lemma 5.1. For anyk ∈ [1..n], k′ ∈ [1..n+ 1], k′′ ∈ [1..n− k′ + 2]:

T(k, k′, k′′) ≡

((¬(k′ ∈ [k + 1..n])) ⇒ T(k, k′ + 1, k′′))

∧T(k, k′ + 1, k′′ − 1))

Moreover:
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• T(k, k′, k′′) = falseif k′′ > (n− k′ + 2).

• T(k, k′, 0) = true.

Proof:
Assume that¬(k′ ∈ [k+ 1..n]) holds. Then pigeonk′ is not in[k+ 1..n]. ThusT(k, k′, k′′) holds iff the
holes[k + 1..n] contain at leastk′′ pigeons among[k′ + 1..n + 1] i.e. iff T(k, k′ + 1, k′′) holds. In this
case we also haveT(k, k′ + 1, k′′ − 1)), since obviouslyT(k, k′ + 1, k′′)) ⇒ T(k, k′ + 1, k′′ − 1)).

If (k′ ∈ [k + 1..n]) holds thenT(k, k′, k′′) holds iff the hole in[k + 1..n] contain at leastk′′ − 1
pigeons among[k′ + 1..n+ 1] hence iffT(k, k′ + 1, k′′ − 1)) holds.

The second relation follows from the fact that[k′..n+1] contains at mostn+1−k′+1 = n−k′+2
pigeons.

The last relation follows immediately from the definition. ut

Let C be a†-formula, letk ∈ [1..n], k′ ∈ [1..n+ 1], k′′ ∈ [0..n+ 1]. We writeC ∈ A(k, k′, k′′) iff:

• Eitherk′′ > (n− k′ + 2) andC = ⊥;

• Or k′′ = 0 andC = >;

• Or 0 < k′′ ≤ (n− k′ + 2), and

C = [(k′ ∈ [k + 1..n]) ∨ C′] ∧ C′′

whereC′ ∈ A(k, k′ + 1, k′′) andC′′ ∈ A(k, k′ + 1, k′′ − 1).

Intuitively, C ∈ A(k, k′, k′′) iff C encodes the formulaT(k, k′, k′′) (according to Lemma 5.1).
We assume given the following ordering on the propositional variables(i ∈ j): (i ∈ j) < (i′ ∈ j′)

if j > j′ or if j = j′ andi < i′.
Let C,D be two†-formulae. We writeC ⊆ D if C =

∧n
i=1 Ci,D =

∧m
i=1Di and{C1, . . . , Cn} ⊆

{D1, . . . ,Dm}.
Let C be a†-formula. We writeC ∈ K(k) iff there existsC′ ⊆ C s.t.C′ ∈ A(k, 1, n− k + 1).

Outline of the proof

1. First we show thatPigHPbn ∈ K(0) (Lemma 5.2).

2. Then we show that ifC ∈ K(k) then one can generate fromC (using a number of steps polynomial
w.r.t. the size ofC) a †-formulaD s.t.D ∈ K(k + 1) (Corollary 5.1).

3. Since the size of each reduced†-formula C s.t. C ∈ K(k) is polynomial w.r.t. n (this follows
from Lemma 5.4 below), we deduce from Point1 and2 (using a straightforward induction) that a
†-formulaCn s.t. Cn ∈ K(n) can be constructed fromPigHPbn in a polynomial number of steps
(indeed, computing the reduced form of a given†-formulaC s.t.C ∈ K(k) can be done in a number
of steps that is polynomial w.r.t. the size ofC).

4. Finally, we show thatS(Cn) must contain� (Lemma 5.6). By Proposition 3.6, this implies that
the reduced form ofCn is⊥ which completes the proof.



26 N. Peltier / A Resolution Calculus with Shared Literals

We start by proving thatPigHPbn ∈ K(0).

Lemma 5.2. Let n ∈ N. PigHPbn ∈ K(0).

Proof:
By the above definition, it suffices to prove thatC ⊆ PigHPbn for someC ∈ A(0, 1, n+1). We show by
induction onk that for anyk ∈ [0..n+1], there existsCk s.t.Ck ⊆ PigHPbn andCk ∈ A(0, n+2−k, k)
(we obtain the desired result fork = n+ 1).

• If k = 0 then the proof is obvious since> ∈ A(0, n+ 2, 0) and> ⊆ C. The above property holds
for C0 = >.

• If k > 0 then by induction hypothesis we haveCk−1 ∈ A(0, n + 3 − k, k − 1) for someCk−1 ⊆
PigHPbn. Moreover, sincek ∈ [1..n+1], we haven+2−k ∈ [1..n+1] hencePigHPbn contains
the clausePn(n + 2 − k) = (n + 2 − k ∈ [0 + 1..n]). We defineCk

def= Pn(n + 2 − k) ∧ Ck−1.
We haven − (n + 2 − k + 1) + 2 = k − 1 < k hence⊥ ∈ A(0, n + 2 − k + 1, k). Since
Pn(n + 2 − k) ∨ ⊥ ≡ Pn(n + 2 − k), we haveCk ≡ (Pn(n + 2 − k) ∨ ⊥) ∧ Ck−1. Thus we
deduce:Ck ∈ A(0, n+ 2− k, k).

ut

Now we show how to construct a†-formulaD ∈ K(k + 1) from C ∈ K(k + 1).
Let C be a†-formula. Letl be a literal. We denote bycutl(C) the†-formula obtained fromC|≤l by

replacing each occurrence of¬l by⊥.
We need the following:

Lemma 5.3. Let n ∈ N. Let C be a reduced†-formula s.t. C ∈ A(k, k′, k′′), wherek ∈ [0..n],
k′ ∈ [1..n + 1], k′′ ∈ [0..n]. Let i < k′. FromPigHPbn ∧ C we can derive in at mostn + 1 steps a
†-formulaC′ s.t. cut(i∈k+1)(C′) ∈ A(k + 1, k′, k′′).

Proof:

By definition, any literal occurring inC occurs in a clause(u ∈ [v + 1..n]), for someu ≥ k′

andv ≥ k′′. By definition of (u ∈ [v + 1..n]), this implies that any literall occurring inS is of the
form (u ∈ v) for someu ≥ k′ andv ≥ k + 1. Thus according to the chosen ordering we must have
l ≤ (k′ ∈ k + 1).

Let u ∈ [k′..n + 1]. Sincei < k′, PigHPbn contains the clause¬(u ∈ k + 1) ∨ ¬(i ∈ k + 1)
where(u ∈ k + 1) > (i ∈ k + 1). We apply the resolution rule successively on each literal(n+ 1 ∈
k + 1), (n ∈ k + 1), . . . , (k′ ∈ k + 1) using the above clauses. IfC is reduced, it contains at most one
occurrence of each literal(u ∈ k + 1), thus this requires at mostn+1 applications of the resolution rule.

Obviously, this replaces any occurrence of a literal(u ∈ k + 1) by α:((u ∈ k + 1) ∧ ¬(i ∈ k + 1)).
Let C′ be the obtained†-formula.

Let C(u, v) a sub-†-formula ofC s.t. C(u, v) ∈ A(k, u, v). Let C′(u, v) be the corresponding sub-†-
formula ofC′. We show, by induction on the pair(−u, v), that we havecut(i∈k+1)(C′(u, v)) ∈ A(k +
1, u, v), for anyv > 0, u ≥ k′.
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• If v = 0 then we haveC(u, v) = > thus cut(i∈k+1)(C′(u, v)) = C′(u, v) = > hence
cut(i∈k+1)(C′(u, v)) ∈ A(k + 1, u, v).

• If v > (n − u + 2) then we haveC(u, v) = ⊥ hencecut(i∈k+1)(C′(u, v)) = ⊥ and the proof is
immediate.

• Otherwise, since0 < v ≤ (n− u+ 2), we have

C(u, v) = ((u ∈ [k + 1..n]) ∨ C1) ∧ C2

whereC1 ∈ A(k, u+ 1, v) andC2 ∈ A(k, u+ 1, v − 1)

We haveC′(u, v) = (C′′ ∨ C′1) ∧ C′2, whereC′′, C′1, C′2 are obtained from(u ∈ [k + 1..n]), C1 and
C2 respectively by replacing any occurrence of a literal(u ∈ k + 1) by α:((u ∈ k + 1) ∧ ¬(i ∈
k + 1)).

By the induction hypothesis we haveC′1 ∈ A(k + 1, u + 1, v) andC′2 ∈ A(k + 1, u + 1, v − 1)
whereC′′j

def= cut(i∈k+1)(C′j) (j = 1, 2).

(u ∈ [k + 1..n]) = (u ∈ k + 1) ∨ (u ∈ [k + 1 + 1..n]). We haveu ≥ k′. The literals(u ∈ k + 1)
are replaced byα:((u ∈ k + 1) ∧ ¬(i ∈ k + 1)). ThusC′′ is of the form(α:((u ∈ k + 1) ∧ ¬(i ∈
k + 1)) ∨ (u ∈ [k + 1 + 1..n]), hencecut(i∈k+1)(C′′) = (u ∈ [k + 1 + 1..n]).

Therefore, we havecut(i∈k+1)(C′(u, v)) ∈ A(k + 1, u, v).
ut

Let p be a literal. We writeC C p if S is of the form
∧n

i=1(pi ∨ Ci), wherepi > p. Clearly, this
implies thatC|≤p = >.

By definition, if C ∈ A(k, k′, k′′) thenC C (k′ ∈ k + 1) (this follows immediately from the defini-
tion, using a straightforward induction onk′, k′′: indeed any clause inS(C) contains a literal greater or
equal than(k′ ∈ k + 1)).

The next lemma expresses the fact that two formulaeDi (i = 1, 2) s.t.Di ∈ A(k, k′, k′′) occurring
a given†-formula can be “merged” by using the merging rule (thus there is at most one†-formulaD s.t.
D ∈ A(k, k′, k′′).

Lemma 5.4. Let C = (L,M, α, δ, µ) be a reduced†-formula s.t. C ∈ A(k, k′, k′′) for k, k′, k′′ ∈ N.
LetD1,D2 be two†-formulae occurring inC s.t.Di ∈ A(k, l′, l′′) for anyi = 1, 2 (wherel, l′ ∈ N). If
l′′ ∈ [1..n− l′ + 2] thenD1 = D2.

Proof:
The proof is by induction on(−l′, l′′).

Sincel′′ ∈ [1..n − l′ + 2], Di is of the form[((l′ ∈ [k + 1..n]) ∨ D′
i) ∧ D′′

i ] for i = 1, 2 where
D′

i ∈ A(k, l′ + 1, l′′) andD′′
i ∈ A(k, l′ + 1, l′′ − 1). By the induction hypothesis, we haveD′′

1 = D′′
2 .

andD′
1 = D′

2. By irreducibility w.r.t. the sharing rule, the two occurrences of(l′ ∈ [k + 1..n]) must be
identical. Then the merging rule applies andD2 (for instance) can be replaced byD1 (thus ifD1 6= D2

thenC is not reduced). ut

The next lemma is the heart of the proof. It shows how to constructC′ ∈ A(k + 1, k′, k′′ − 1) from
C ∈ A(k, k′, k′′).
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Lemma 5.5. Let n ∈ N. If C ∈ A(k, k′, k′′), wherek ∈ [0..n], k′ ∈ [1..n + 1], k′′ ∈ [0..n] and
k′′ ≤ (n− k′ + 2), then one can generate fromC ∧ PigHPbn in a number of steps polynomial w.r.t.n a
†-formulaC′ s.t.C′ ∈ A(k + 1, k′, k′′ − 1).

Proof:

We writeC ∈ A′(k, k′, k′′) iff C is of the formC′ ∧ C” whereC′ ∈ A(k, k′, k′′) and if k 6= 0 then
C′′ C (n+ 1 ∈ k).

First, we remark that we haveC C (n+ 1 ∈ k + 1). We prove that one can generate fromC a
†-formulaC′ s.t.C′ ∈ A′(k + 1, k′, k′′ − 1).

The proof is by induction on(−k′, k′′).

• If k′′ = 0 then the proof is immediate (sinceC′ = >, satisfies the desired conditions).

• If k′′ > 0, then sincek′′ ≤ (n− k′ + 2), C is of the form

((k′ ∈ [k + 1..n]) ∨ C1) ∧ C2

whereC1 ∈ A(k, k′ + 1, k′′) andC2 ∈ A(k, k′ + 1, k′′ − 1).

By the induction hypothesis, since(k′′− 1) ≤ (n− (k′+1)+2), we deduce fromC2 a†-formula:
C′2 s.t.C′2 ∈ A′(k + 1, k′ + 1, k′′ − 2).

If k′′ = (n − k′ + 2) then we haveC1 = ⊥ (sincek′′ > (n − (k′ + 1) + 2)). Otherwise, by the
induction hypothesis, we deduce fromC1 a clause set:C′1 s.t.C′1 ∈ A′(k+ 1, k′ + 1, k′′− 1). Thus
we can deduce from(k′ ∈ [k+1..n])∨C1 the clause set((k′ ∈ [k+1..n])∨C′1)∧C′2 where either
C′1 = ⊥ (if k′′ = (n− k′ + 2)) or C′1 ∈ A′(k + 1, k′ + 1, k′′ − 1).

But (k′ ∈ [k + 1..n]) = (k′ ∈ k + 1) ∨ (k′ ∈ [k + 1 + 1..n]).

By Lemma 5.3, sincek′ < k′ + 1 we can construct fromC2 a clauseC′′2 s.t. cut(k′∈k+1)(C′′2 ) ∈
A(k + 1, k′ + 1, k′′ − 1). Moreover, we haveC′2 C (k′ ∈ k + 1) < (n+ 1 ∈ k + 1).

By resolving this†-formula with(k′ ∈ k + 1) ∨ (k′ ∈ [k + 1 + 1..n]) ∨ C′1 we get:

cut(k′∈k+1)(C′′2 ) ∨ (k′ ∈ [k + 1 + 1..n]) ∨ C′1|≤(k′∈k+1).

Let C′′1 = C′1|≤(k′∈k+1). SinceC′1 ∈ A′(k+1, k′+1, k′′−1), C′1 must be of the formT ∧T ′ where
T ∈ A(k+ 1, k′ + 1, k′′ − 1) andT ′ C (n+ 1 ∈ k + 1). Since(k′ ∈ k + 1) < (n+ 1 ∈ k + 1),
we haveT ′

|≤(k′∈k+1) = >. Moreover,T|≤(k′∈k+1) = T (indeed, sinceT ∈ A(k+ 1, k′ + 1, k′′−
1), T contains only atoms of the form(. . . ∈ v) for somev ≥ k + 2, thus all the atoms inT are
lower than(k′ ∈ k + 1)).

By Lemma 5.4 we havecut(k′∈k+1)(C′′2 ) ≡ T .

Hence after (at most) one merging step we get:(k′ ∈ [k + 1 + 1..n]) ∨ T .

Hence the clause setC′ = ((k′ ∈ [k + 1 + 1..n]) ∨ T ) ∨ C′2 has been generated. By definition we
haveC′ ∈ A(k + 1, k′, k′′).

Clearly, a polynomial number of steps is required for each sub-†-formulaD ∈ A(k, k′, k′′). If the
†-formulae are reduced, the number of distinct such†-formulae is bounded byn2 (due to Lemma
5.4). Thus, the total number of steps is polynomial.
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ut

Corollary 5.1. Let n ∈ N. If C ∈ K(k) wherek ≤ n. We can construct fromS ∪PigHPbn in a number
of steps polynomial w.r.t.n a †-formulaD s.t.D ∈ K(k + 1).

Proof:
This follows immediately from Lemma 5.5. ut

Lemma 5.6. Let n ∈ N. Let C be a†-formula s.t.C ∈ K(n). S(C) contains�.

Proof:
By definition, we haveC′ ⊆ C for someC′ ∈ A(n, 1, 1). We show that for any†-formula C′ s.t.
C′ ∈ A(n, n+ 2− i, 1), S(C′) contains�. The proof is by induction oni.

• If i = 0 then1 > n−(n+2−i)+2 hence the proof stems from the definition ofC′ ∈ A(k, k′, k′′).

• Otherwise, by definition ofC′ ∈ A(k, k′, k′′), S(C′) must contain the clauses inS((n + 2 − i ∈
[n+1..n])∨S(D)) whereD ∈ A(n, n+3−i, 1). By definition, we have(n+2−i ∈ [n+1..n]) = �
for anyi ∈ [1..n + 1]. Moreover by induction hypothesisS(D) contains�. ThusS(C′) contains
�.

ut

Theorem 5.1. Let n ∈ N. The †-formula⊥ can be obtained fromPigHPbn by †-resolution and†-
factorization, in a number of steps that is polynomial w.r.t.n.

Proof:
Immediate by Lemma 5.2, Lemma 5.6 and Corollary 5.1. ut

6. Related works

Not surprisingly, several authors already tried to improve the efficiency of the resolution calculus by
introducing mechanisms for sharing information and avoiding redundant computations.

Our technique is obviously related to the use ofstructure-sharing, that is used by most existing
provers in order to represent information in a convenient and efficient way (see for instance [5]). Sharing
is ubiquitous in implementations of automated reasoning systems. However, rather than using it as a tool
for storing terms and clauses, we use it at thelogical level, and take it into account when defining the
inference rules. Shared subclauses and goals can be merged, which yields shorter derivations as well as
more compact representations of the search space.

The approach presented in [14] (calledparamodulation without duplication) is similar to our work,
though more concerned by the reduction of the search space than by the reduction of proof length.
Clauses are represented by graphs and inferences are performed by adding new edges into the graph.
The idea is similar to the one in this paper, but there are some differences. The method by [14] handles
equality and has the advantage that terms may be shared as well as literals and clauses. To this aim,
instead of explicitly applying the substitutions (i.e. the unifiers and renamings) generated during proof
search, the method encodes them into the graph, as equational conditions attached to the edges. More-
over, graphs may be cyclic (in our context this would mean that inferences between a†-formula and the
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context in which it occurs would be allowed). A drawback is that this makes the detection of empty
clauses much more difficult: it does not terminate in general thus must be interleaved with the inference
steps. Moreover, additional information must be stored into the edges. Our method avoids this, though at
the cost of some additional redundancy. In [14], building the graph is only part of the proof search: the
other part is implicitely delegated to the algorithm for detecting empty clauses (in particular, for Horn
clauses, the entire proof search is performed by this algorithm, since the building of the graph is trivial),
whereas in our approach all the work is explicitly done by the inference rules. An advantage of our
method is the use of the sharing and merging rules, that allow one to merge identical subgoals without
having to care how they have been obtained. Notice that this feature (not shared by [14]) was essential
for constructing a polynomial refutation ofPigHPbn. Moreover this also simplifies the writing of the
inference rules (we make the†-formulae disjoint, and merge them afterward when possible). Moreover,
our technique also has the advantage that inferences may be performed without having to explicitly com-
pute the clause on which the rule is applied (only the literal on which the rule is applied is important).
This is required in [14] because one need to know the vertices to which the “replacement edges” should
be added.

It is not difficult to see that Tseitin’s extended resolution [20] polynomially simulates our technique,
when restricted to the propositional case (as recalled before, first-order versions of Tseitin’s extension
rule can also be considered). Indeed, extended resolution allows one to introduce arbitrary definitions
in the clause set, using equivalences of the formp ⇔ φ, wherep is a variable andφ a formula. These
definitions can be proceeded as usual, after transformation into clausal form. This feature can be used
to encode†-formulae into standard clauses, simply by introducing additional propositional variables to
“name” shared subformulae. Then our†-resolution rule can be simulated by repeated applications of the
resolution rule. Rather than giving a formal justification and proof, we provide an illustrating example
that should allow the reader to grasp the intuitive idea.

Example 6.1. The†-formula(p ∧ q) ∨ r can ge represented by the following clause set:

p ∨ ¬r′

q ∨ ¬r′

r ∨ r′

wherer′ is introduced as a shortcoming forq∧r. Resolving the initial†-formula with¬p∨p′ yields:

(p ∧ q ∧ p′) ∨ r.

A clause set representing this†-formula can be obtained by resolving the clausesp ∨ r′ and¬p ∨ p′.

But Tseitin’s extended resolution is not usable in practice due to the huge branching factor. Our
method can be seen as a restriction of extended resolution which has the following advantages: first it
strongly restricts the kind of definitions that can be proceeded. Only the ones allowing an immediate
reduction of the size of the formula will be considered. Second the adding of the definitions isdynamic
and does not need not to be performed explicitly.

Our method is also related to the multiresolution approach described in [6] in the context of propo-
sitional logic. The idea of multiresolution is to use binary decision diagrams (see for instance [15]) to
represent sets of clauses. This yields a representation of propositional clause sets that is much more
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compact that the usual one. Moreover [6] shows how to adapt the usual resolution principle in order
to operate on these representations. Due to the more compact representation and due to the sharing of
information, one resolution step in the obtained calculus can correspond toseveralresolution steps in the
usual sense. Building on these results, [6] proposed a breath-first search strategy similar to the Davis and
Putnam procedure [8]. As our procedure, the multiresolution calculus refutes the pigeonhole problem in
polynomial time. It is worth mentioning that [16] proposed a related approach, also based on breath-first
search and also taking advantage of the expressive power of BDD’s to reduce the search space, but us-
ing a very different and original way of representing the search space. Roughly speaking, the idea is to
denote as a BDD the set of sets of “active” clauses, i.e. of clauses that remains to satisfy in the partial
models constructed so far.

Though based on similar principles, our technique is essentially different from the one of [6] (and
[16]) due to the very different way of representing information (†-formulae w.r.t. BDD). Moreover the
procedures of [6, 16] are (as far as we are aware) restricted to propositional logic, whereas our method
handles first-order logic as well.

In [17], a calculus has been proposed for reducing the length of resolution proofs, by factoring some
literals. The idea is completely different from the one considered in the present paper, since in [17] only
literals belonging to the same clause can be shared, whereas the principle of the†-resolution calculus
is to share literals or disjunction of literals between distinct clauses. On the other hand, the calculus
presented in [17] has the advantage that the common part ofdistinct literals can be shared. For instance
the clausep(a) ∨ p(b) is expressed as a constrained clause:p(x) if x = a or x = b. The patternp(x)
is shared between the two terms. Thus the two presented approaches are orthogonal. Their combination
(and/or merging) could deserve to be considered.

7. Conclusion

We have presented a method for reducing proof length in resolution-based calculi, which tries to avoid,
when possible, the duplication of information. This is done by an extensive use of sharing at the logical
level. We designed inference and simplification rules, and we proved their soundness and refutational
completeness. Using the well-known pigeonhole problem as an example, we have shown that our tech-
nique – when restricted to propositional calculus – can reduce the length of the proof by an exponential
factor.

Future works include the implementation of a theorem-prover based on the proposed rules in order
to estimate their practical performances. Moreover, the extension of our technique to equational theorem
proving (using†-extensions of the paramodulation or superposition rules) deserves to be considered.
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