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Abstract. We present a resolution calculus for first-order logic using a more concise formalism for
representing sets of clauses. The idea is to represent the clause set at hdiceatedAcyclic

Graph, which allows one to share common literals instead of duplicating them, thus yielding a
much more compact representation of the search space. We define inference rules operating on this
language and we prove their soundness and refutational completeness. We also design simplification
rules for pruning the search space. Finally we compare our technique with the usual resolution
calculus and we prove (using the pigeonhole example) that our method can reduce the length of the
proof by an exponential factor (in propositional logic).
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1. Introduction

The resolution method [18, 13] is one of the most widely used approaches in first-order theorem proving.
Most powerful theorem provers nowadays are based on resolution techniques (using superposition for
handling equalities). Thaniformity and very lowbranching factorof the resolution calculus makes it

very efficient in practice (especially when strategies are used to reduce the search space).

However, when compared to other logical formalisms such as natural deduction or sequent calculi,
resolution has an important drawback. The length of the obtained proof is at most exponentially shorter
than the Herbrand complexity of the clause set at hand (i.e. the number of closed instances needed
in the derivation). This implies that resolution proofs are in general non-elementary longer than the
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shortest proof in sequent calculus with cut for instance [19]. Resolution is known to be inefficient on
some particular (propositional) formulae or sequences of formulae such as the well-known pigeonhole
problem for which the shortest resolution proof is exponential, whereas polynomial proofs exist in more
powerful systems (see for instance [12, 7, 4] for more details about this issue).

Various techniques have been proposed for overcoming this problem. In particular, the non-analytic
“cut” rule used in sequent calculi can be easily simulated in the context of the resolution calculus by
adding a rule dynamically introducing new predicate definitions in the clause sets. This idea has been
introduced by Tseitin [20] for propositional proofs and extended to first-order logic in [9]. Definitions
of the formp(¥) < ¢ wherep is a new predicate symbol arda formula on the variables i can be
derived and processed (after transformation into clausal form). Unfortunately, just as the cut rule, this
approach is not suitable for pure automatic proof search since no heuristic exists for choosing the right
definitions (systematic introduction of all possible definitions is of course unrealistic). Function intro-
duction techniques [2] have also been designed for simulating some particular form of cut introduction.
[10] considered various kinds of function introduction rules and analyzed the influence of these rules on
the length of the shortest proofs. Still, this approach greatly increases the branching factor of the calculi.

In this paper, our aim is to introduce a technique for reducing proof length which does not suffer from
this drawback, thus does not increase too much the search space. The basic idea is to avoid duplicating
literals — or disjunctions of literals — during the search (in particular when applying the resolution rule).
To this purpose, we allow disjunctions of literals to sfgaredbetween distinct clauses, which avoids
having to explicitly copy them. Consequently, the inferences applied on these literaimai@neously
proceeded oall the clauses in which it occurs. More precisely, instead of defining a calculus operating
on clauses as usual (i.e. on disjunctions of literals), we consider more complex (quantifier-free) formulae,
which we called f-formulae”, possibly containingonjunctionsdisjunctions andshared subformulae
This formalism is related to AND-OR graphs that are commonly used to represent the search space of
subgoal-reduction strategies (in particular in Horn logic). It has the same theoretical expressive power
of clause sets, but is much more concise. Then we define appropriate inference and simplification rules
operating on such-formulae. These rules extend the usual resolution, factorization or subsumption
rules to the new language. We shall see that the obtained calculus allows one to factorize some part of
the proofs — thus significantly reducing their length — due to the possibility of sharing identical subgoals.

It can also prune the search space.

Before entering in the technical details, we illustrate our point on a (deliberately simple) example, in
order to allow the reader to grasp the intuitive ideas behind our method.

Let S be the following clause sep(q, r are predicate symbols, is a variableg, ..., a, denotes
constant symbols).

Assume that the atoms are ordered as follgws) > q(y) > r(z), with p(a1) > p(az) ... > p(ay)
(the ordering is chosen only to illustrate our point). Literal; ) is maximal in Clausé. We can resolve



N. Peltier / A Resolution Calculus with Shared Literals 3

Clausel with Clause2 and3 yielding respectively the two following clauses:

4 qla1) Vplag) V... Vplan)  (res,1,2)
5 7r(a1)Vplaz)V...Vpla,) (res,1,2)

At this pointp(ag) becomes maximal in Clausésand5, thus we can again apply the resolution rule
with clause® and3, yielding

6 g(a1) Valaz) Vplaz) V... Vpla,)  (res4,2)
7 r(a1)Vg(az) Vplaz) V...Vpla,)  (res,s,2)
8 q(ar) Vr(ag) Vplas)V...Vp(a,)  (res4,3)
9 r(ay)Vr(a)Vplas)V...Vpla,)  (res,5,3)

By repeating this process for each constant synabolve get2” clauses of the forn\/;"_, pi(a;),
where for alli € [1..n], p; = qorp; = r.

Clearly, this huge search space can be significantly reduced by using a more concise and more ap-
propriate representation of clauses. The above clause set can be represented as a disjunction

n

\/ é(as),

i=1

where¢(a;) denotes the conjunctign(a;) A g(a;) A r(a;).

This conjunction could be obtained from the original clause set as follows. First the resolution rule
is applied onl and2, yieldingg(a1) V p(a2) ...V p(a,). But instead of duplicating the whole sequence
of literalsp(az), . . ., p(a,) we simply “insert” the literalz(a;) in clausel. Indeed, by distributivity, the
conjunction

[p(a1) Vplaz) ...V plan)] Algla1) V plaz) ... V p(an)]

is equivalent to
[p(a1) A q(an)] vV p(az) ... V p(an).

Thus instead of adding a new clause, we mergfacethe resolved literal in the original clause (i.e.
p(a1)) by the conjunctiop(ai) A g(a1).

This principle can be generalized. In order to apply the resolution rule on a liteurring in
a formula¢ and a literal-/ occurring in a formulayp, we replace the occurrence binside ¢ by the
conjunctionl A 1/, wherey is obtained from) by replacing—/ by false Obviously, the context is not
affected by the application of the rule. Of course in the first-order case some variables can be instantiated
which implies that some copying is still necessary (as we shall see in Section 3). But our technique
reduces this to a minimum.

At this point, we get:

[p(a1) Ag(ar)] v plaz) V...V p(an)

Then we apply the resolution rule @fia;) using the claus8. According to the above principle, we
replace the litera§(a,) by (¢(a1) A r(a1)), hence we get:

[p(a1) A qlar) Ar(ar)] VvV pla2) V...p(an)
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By repeating this process for any [1..n] we get:

\/(p(ai) A q(ai) Ar(ag)).
=1
In some sense, our approach has similar effects as the adding of additional definitions by the exten-
sion rule of Tseitin or Eder for instance (see above). For instance, in the above exafmpleould be
introduced by an extension step as a name for the forg{ala A ¢(a;) Ar(a;) and the claus¥/;"_; ¢(a;)
could be inferred. Our technigue, though more restricted, has some advantages. First, the choice of the
formulae that should be “named” is strongly guided by the context: we do not rely on “blind” generation
of arbitrary definitions. Second, the adding of the definitions is made implicit in the calculus.
The rest of this paper is devoted to a formalization of this technique and to the study of some of the
properties of the obtained calculus. It is structured as follows.

e In Section 2 we introduce a new language for denoting clauses and sets of clauses, the so-called
t-formulae. We describe the syntax and semantics of our language and provide some additional
definitions.

e In Section 3 we show how to extend the resolution calculus in order to hafidtenulae instead
of clauses. We define generalizations of the resolution an factorization rules, and we adapt the
usual subsumption rule. We also define some essentially new simplification rules (i.e. rules that
are specific tg-formulae). The obtained calculus is calledesolution.

¢ In Section 4.1 we prove the soundness and refutational completengsssafiution (with simpli-
fication and redundancy criteria).

¢ In Section 5 we show thgtresolution refutes the pigeonhole formula in a polynomial number of
steps (which implies that it cannot be simulated by ordinary resolution).

e Section 6 compares our approach with similar ones in the literature.

e Finally, Section 7 concludes the paper.

2. ft-Formulae

In this section we introduce the syntax and semantics of the langudg®whulae. Aj-formula can be
seen as a special case of a (quantifier-free) first-order formula, in which some of the subformulae can be
shared in order to reduce the size of the formula.

2.1. Preliminaries

We first review some basic definitions and notations. Though all the necessary definitions are provided,
we assume some familiarity with the usual notions in logic and automated deduction (see for instance
[11]).

We assume givea disjoint sets of symbols: a set iifnction symbol& (including constants), a set
of predicate symbol€, a set ofvariables) . Letarity be a function mapping each symboldJ Q2 to a
unique natural number.
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The set otermsis built inductively as usual on the set of function symbdland the set of variables
V. An atomis an expression of the form(¢y,...,t,) wherep € Q, n = arity(p) andty,...,t, are
terms. Aliteral is either an atom (positive literal) or the negation of an atom (negative literdl)s l&
literal, ¢ denotes the literal complementaryidi.e. (¢ £ liflis positive and —[)¢ = 0).

A clauseis a finite multiset of literals (written as a disjunction). The empty clause is denoted by

If [ is a literal (resp. term, atom, clause) thear(/) denotes the set of variables occurring.irAn
expression with no variable is said to @und

A substitutiono is a function mapping each variableto a term denoted byo. As usual, a substi-
tution can be extended into a homomorphism on the set of terms (resp. atoms, literals and clauses). If
t, s are two terms (or atoms, literals) theris said to be anifier of ¢, s iff to = so. Itis well-known [1]
that any unifiable pair of terms has a most general unifier (m.g.u.), unique up to a renaming.

If C; =1V Dy andCy =1’ vV Dy are two ground clauses andis the m.g.u. of¢ and/’, then the
clause(D; V Dy)o is called aresolventof C;,Cs. If C = (I VI’ v D) ando is the m.g.u. of, !, then
(I v D)o is afactorof C.

An interpretationis a (possibly infinite) set of ground atoms. An interpretafiogatisfies a ground
literal [ if either [ is positive and occurs i or [ is negative and® ¢ I. An interpretation satisfies a
ground clause&” if 7 satisfies a literal € C. An interpretation satisfies a set of clauge# for any
C € S and for any ground substitution Z satisfiesC'c. We writeZ |= S if Z satisfiesS.

A clauseC subsumes clauseD iff there exists a substitution s.t. Co C D. This is written
C <%* D. This notation may be extended to clause setsS, §’ are two clause sets, then we write
S <0 S’ iff for any clauseC’ € S’ there exists a claugé € S s.t.C <5 C".

2.2. Syntax off-Formulae

Let A be a set ohodeddisjoint from33, Q, V.
Let £ C A. A L-clauseis a finite multiset set of nodes occurring 4h(denoted as a disjunction).
The emptyL-clause is denoted hiy.

Definition 2.1. (f-Formulae) Af-formulais a5-tupleC = (£, M, «, §, u) where:
e L C A (Listhe setof nodes if);
e M C L (M isthe subset of nodes that are labeled by literals);
e o € L (o denotes the root af);

e /¢ is afunction mapping each symboldh M to a set ofC-clauses{ may be viewed as a transition
function, mapping each node not labeled by a literal to a set-ofauses, i.e. a disjunction of
nodes).

e 4 is a function mapping each symbol.ivt to a literal.
Example 2.1. The tupleC = ({«, 5,7, A, ¢}, {7, A, ¢} o, 0, 1) is at-formula, where:

d={a— {8V}, 08— {\(}}
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and
p=A{X—p(f(z)),{— plg(x)),y — —p(x)}.

As we shall se€ is equivalent to
(p(f(x)) Ap(g(2))) vV —p().

Remark 2.1. The reader should note that we do not require thas finite. Thet-formulae we con-

sider in the paper are mostly finite. However, for technical reasons, we prefer to keep to possibility of
considering infinitef-formulae. This will be useful in the proof of refutational completeness, in which
infinite T-formulae are constructed as “limits” of sequences of fifhifermulae (finitet-formulae can
easily be constructed and handled by a computer, whereas handling infoit@ulae would require
some mechanism to denote them symbolically).

Given af-formulaC = (£, M, «, §, ), we define inductively a relatiofic on nodes inC as follows:
v =c¢ B iff eithery = 3 or there exist€' € §(5) and(¢ € C s.t.y =<¢ (. Intuitively, v <¢ 3 holds if the
node~ occurs behind the noda

A t-formulaC is said to beacyclicif < is an orderingln the rest of the paper we assume (without
explicitly mentioning it) that all the considered t-formulae are acyclic.

Given af-formulaC = (£, M, «, ¢, 1) we denote byar(C) the set of variables occurring @ i.e.
the set of variables occurring in a litera(3), for somes € M. C is said to begroundif var(C) = (.

Two f-formulaeC; = (£;, M;, o, 6;, ;) for i = 1,2 are said to béisjointiff £, N Ly = 0. Clearly,
two givenf-formulae can always be made disjoint by renaming (automatically) the nodes occurring in
one of them in order to satisfy the desired properties (as we shall see, this preserves the semantics of the
t-formulae).

If C = (L, M,a,d,n)is at-formula, ands is a substitution, the@o denotes thg-formula:

(L, M, a6, no),
where for any3 € M, po(8) £ u(3)o.

LetC = (£, M,a,6,p) be at-formula. For any3 € L, we denote byCi; the f-formula
(L, M, B,6,11). Cg can be seen as a sgifermula inC, starting at the “root’3 instead ofa. Cig is
said to be aub+-formulaof C.

The notationC3 can be extended to the case in whiglienotes & -clause or a set of-clauses.
In this case we add a new (i.e. not occurringClnnode«’ denoting the clausg. More precisely, if
C = (L, M,a,d,u)is at-formula andD is aL-clause, thei@ , denotes the-formula:

(Lufa}, M, 6U{a = {D},p),
wherea’ is a node not occurring ig. If S is a set ofC-clauses, thed| s denotes thg-formula:
(Lu{d'}, M, 6U{d — S u),

wherecd’ is a node not occurring if.
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Example 2.2. For instance, iC is the {-formula of Example 2.1, thefi 5 denotes the¢-formulaC’ =

({a7 ﬂ? IY’ )\7 C}? {77 >\7 C}? /B’ 67 /‘1/)'
C|av denotes g-formula of the formC” = ({a, 8,7, A, (, €}, {7, A, (}, €,6', 1) where:

6 = {6'—> {Oé\/ﬁ},a'_’ {/8\/7}76'_> {/\,C}}

As we shall seq;” is equivalent to:

(p(f(z)) Ap(g(x))) V —p(z) V (p(f(x)) A p(g9(x))).

2.3. Semantics of-Formulae
From j-Formulae to Clause Sets

Any f-formulaC = (£, M, «, §, 1) can be associated to a set of clauSé&s) defined as follows:

Definition 2.2. (Semantics of-Formulae) Let€ be anf-formula.S(C) is the smallest set of clauses s.t.:

e If o € M, thenS(C) £ {u(a)}.

e fag Mand(ag V...V a) € d(a) and for anyi € [1..n], C; € S(C),,) thenCy v ...V C), €
S(0).

An interpretatiorZ satisfiesa {-formulaC (writtenZ = C) iff Z = S(C).

Note that this definition does not require tigais finite. The setS(C) is exactly the set of clauses
obtained fronT by transformation into clausal form, if a “naive” transformation is used.

It is easy to see that standard clauses can be seen as a particularicésenaflae. More precisely,
aclause.; v ...V L, is equivalent to theé-formula:

({a, 1, B}, {81, Bty {a—= {(B1 V...V Bu)} L {Bi — Li | i € [1.n]}).

Similarly, if § = {C1,...,Cy} is a set of clauses whe £ /%, L;; (whereL;; are literals and

k; € N), thenS is equivalent to the-formula:
(L, M, a,6, )

where:

def

e L={a}U {Bl] i€ [l.n],j € [l..k]}.
e ME L\ {a}.
o d(c) E{VE, By |i € [Ln]}.

def

° ,U(ﬁz]) = Lijy for any: € [17”6],] S [1]@]
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Thust-formulae denote uniformly clauses and sets of clauses.

We write C = (' if C,C’ are logically equivalent (i.e. i8(C) = S(C’)). We writeC ~ (' iff
S§(C) = 8(C’) (this implies that = C’ but the converse does not hold).

We denote byT the f-formula ({a},0, o, — 0,0) and by L the {-formula ({a},0,a,a —
{OJ0},0). Obviously we haves(T) = 0 (T is valid) andS(L) = {0} (L is unsatisfiable).

def

Example 2.3. LetC = {£, M, «, 6, u} be af-formula where:

def

o L= {05,61162763763711727’7}'
® M d:d{517/827ﬁ3771772}'
o 3(a) Z{BV 1}, 8(8) = {B1, B2, B3} () = {m, 72}

def

e 1(B;) = p; foranyi = 1,2, 3, andu(v;) d:equ foranyj =1,2.

The sets{f1, 52,03} and {v1,~2} essentially represent conjunctions. It is easy to see@hat
equivalent to the following clause set:

1V @
P2V qi
p3Vq1
P11V G2
P2 VG2
Dp3 Vg2

def

Example 2.4. LetC = {{«a, 58, 5,7, A}, {6,7, A\}, «, 0, u} be af-formula where:

def

o s ={a— {8V}, 8= {8 ALy {y A} }.

o uE {8 —a,y b c}

C is equivalent to the following clause set:
{aVb,aVeceVb eVl

The literalc corresponding to the nodeis shared inside the formulaeA ¢ andb A ¢ corresponding to
(6 and~ respectively.

Clearly the size o6 (C) may be exponential w.r.t. the size®fas evidenced by the following:
Example 2.5. LetC,, = (£,,, My, «, 6, i1r,) be @ sequence gfformulae defined as follows:

b ‘Cn :{avalv"'aanaﬁla"'aﬂﬂy’Yla---a'yn}-
i Mn: {ﬁl)"'?ﬁnavla"'van}-



N. Peltier / A Resolution Calculus with Shared Literals 9

e (a)={a1V...Van},d(ay) ={Gi,vi}fori=1,... n.
o u(B) =pl, uly)=pifori=1,...,n.

The size ofC,, is linear w.r.t.n, butS(C,) = {p V...V pin | Vj € [1..n],i; € {1,2}} contains2”
distinct clauses.

If 61, 02 are two functions defined on two disjoint domaifis L, respectively, thei; U §, denotes
def

the function defined on the domaih U £ as follows:(d; U d2)(a) = d;(«) if o € L;.
If 0 is a function defined o thend{« — S} is the functiond’ defined onl U {«} as follows:

§'(8) E8(B)if B+ aandd (o) £ S (we may haver € L ora & L).

2.4. A Linear Notation for {-Formulae

The above definition is suitable for mathematical definitions and proofs, but it is not very convenient to
use in practice. For the sake of conciseness and readability we introduce a more readable notation for
denotingf-formulae. This notation is very close to the one usually used to denote term-graphs [3] for
instance.

We write aj-formula as a usual (quantifier-free) formula in negation normal form, constructed on a
set of literals using the connectivesandA. For instance, thé-formula of Example 2.3 can be denoted
by the formula

(P1 Ap2 Ap3) V(g1 Ag2).

In order to express sharing, we associateme(i.e. a node) to some of the subformulae. This is
be done by prefixing the corresponding subformula by the node, as follews;:a v (2:b). These
nodes can be reused afterwards, in order to avoid duplicating the considered subformula. For instance
a:(f:aV B) denote the formuléa \ a), where the two occurrences @fire shared. Unnamed subformula
may be implicitly associated to arbitrary, pairwise different, nodes.
The t-formula in Example 2.4 is denoted by

(aNXie) vV (DBAX).

The definition of) is given only once and it can be reused as many times as needed.

This notation is obviously much more readable then the previous one, hence will be used in the
forthcoming examples.

Formally, t-formulae can be inductively constructed as followsl i a literal, then we also denote

by [ the t-formula
({a}.{a} a,0,{a—1})

whereq is a arbitrarily chosen node.
If C = (L, M,a,d,n)is at-formula ands ¢ L, thengs:C denotes the-formula

(LU{B}, MU{B}, 8,6 U{B — a},p).

Finally, if C; = (L, £, o, 6;, ;) for i = 1,2 are two disjointi-formulae, thert; VCs (resp.Ci AC2)
denote thg-formula
(L1ULoU{a}, LY ULy a,61Ud U{a— S})

whereS = {a1 V as} (respS = {a1, a2 }) anda is a new node not occurring iy, Lo.
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2.5. Transforming {-Formulae

In this section, we introduce some basic transformations operatingfarmulae. These definitions
provide useful mathematical tools for handlifgormulae, which will serve as a basis for defining the
inference and simplification rules of Section 3 and for proving their soundness.

2.5.1. Replacement of-Formulae

The first definition allows one to replace a st#ermula occurring in a giveri-formulaC by a new
t-formula.

Definition 2.3. (Replacement) Lef = (£, M, «,d, ) andC’ = (L', M’ o/, 0’ 1) be two disjoint
f-formulae. Letg € £. We denote by [C'] 5 the t-formula

(LUL,(MUM)\{B},a,(6UN{B— o} pup}.

Note thatC[C'] 3 is an acylict-formula sinceC, C’ are acyclic and sincé and £’ are disjoint.
If C,C’ are not disjoint, the@[C’] g denotes thg-formulaC[C"] 3, whereC"” is an arbitrary relabeling
of ', disjoint fromC.

For instance(a V (a:b A ¢))[mc Ad]q = aV (a:(mc A d) Ac).

Lemma 2.1. LetC,C’ be twot-formulae. Let3 be a node occurring iéi and letD e C[C')5.

Let 7 be an interpretation such thatl= C and for any ground substitution, eitherZ |~ Cjgzo or
T EC'o. ThenZ = D.

Proof:

The proof follows from the fact that-formulae denote formulae that are essentially monotone, in that
negations only appear on the atomic subformulae. More formallg, tet (£, M, «, d, ). Leto be a
ground substitution. LeT be an interpretation s.t. eith&rj= Cjzo or Z |= C'o. Lety € L. We prove,

by induction on=¢, that if 7 = C|,c andy =¢ 3 thenZ = D)o (we obtain the desired result for

a =, since ifa ¢ (8 then obviouslyS(C) does not depend aof, thusC = D).

e Assume thaty = 3. ThenDy, = C'. If T  C,0 we haveZ = Cjgo henceZ = C'o and
T = Dyo.

e Assume thay ¢ 3. LetD € S(D),). By definitionD is eitheru(v) or of the formD; V... v D,
whered(y) contains a clause; V ...V a, St. D; € S(Dy,,) foranyi € [1.n]. If D = u(y)
thenD € S(Cj,), thus ifZ = C,0 we haveZ = Do. Otherwise, sinc€ = Cj,o, hence there
existsi € [1..n] s.t. T |= C|,,0. By the induction hypothesis this implies that= Dy, 0. Thus
7 = Do andZ = Do.

O
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2.5.2. Insertion off-Formulae

The following notation allows one to insert a clause or a set of clauses at some specific nofde in a
formula. The difference with the previous notation is that the clauses corresponding to the node in the
initial T-formula are preserved instead of being deleted.
LetC,C’ be disjointf-formulae. Let3 be a node irt.
We denote by’ (C’) 5 the -formula:
ClCz N C']g.

Forinstance(a V (a:b A ¢))(mc A d)o = aV (a:(b A —cAd) Ac).

Lemma 2.2. Let C,C’ be twot-formulae. Let3 be a node irC. LetZ be an interpretation s.t. for any
ground substitutiow, eitherZ = Cjgo or Z |= C'o. ThenZ |= Co iff T = C(C')g0.

Proof:
The proof follows from Lemma 2.1. Indeed, we have eithé# C\go or Z |= Cjgo A C'o. O

2.6. Weakening

The following notation allows one to delete, in a givefiormula, the clauses not containing a given
literal.

LetC = (£, M, «a, 4, u) be aj-formula. Letgs;, 52 be two nodes irC. We write 31 ><i¢ 3 if there
existsA =¢ aand(; V (o vV C € 6(\) s.t. (1 # (e andf; <¢ ¢; fori = 1,2. Informally 51 < B2 iff
S(C) contains a clause of the for@y v Cy vV D, whereC; € S(C|ﬁi)'

Let 5 € M. We denote byvg(C) the -formula obtained by replacing by each nodey € £ s.t.

v e B.

Clearly,S(wg(C)) contains all the clauses $(C) that contairy(/5). However, not all the clauses in

w;(C) containgu ().

Proposition 2.1. LetC be af-formula. LetD = wg(C). ThenS(D) C S(C).

Proof:
Immediate, sinc® is obtained fron by replacing some of the nodes trye. O

Example 2.6. Let C be thef-formula (in linear notation)(a:p A B:q) V (v:r A (:s). We haven ¢
anda ¢ ¢. Buta pée 8. Thusw,(C) = (acp A T)V (yir AQis) = aep V (7 A (:8).

3. Thef{-Resolution Calculus

We are now in position to define our extended resolution calculus. We adapt existing rules (resolution,
factorization and usual simplification rules such as subsumption) in order to hafatlaulae, and we
introduce some essentially new simplification rules, that are specificdonulae.

3.1. Simplification rules

First, we introduce some simplification rules which are useful for reducing the size ¢ffthmulae.
We shall prove that these rules preserve the semantics of the consjeferetulae.
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3.1.1. Reduction

The first simplification rule allows one to remove useless transttjdres transitions of the formy —
{C}, where~ is a node and” a A-clause. Such transitions can easily be discarded beeaoae be
directly replaced by’ (this is possible because this does not increase the number of clauses occurring at
each node).

For instance, the¢-formula

C = (a:(f:aVyb)Ve)A(aVd),

can be reduced to:
C=(B:aV~ybVe)A(B:aVybVd).

The nodex is useless.
We need to introduce a notation. Leebe a function from\ to the set ofA-clauseso is extended to
operate on\-clauses and sets atclauses using the relations(L, V...V L, )o < ¢(L1)V...Vo(Ly,)

ando(S) £ {Co | C € S}.
If ¢ is a partial function from\ to sets ofA-clausesg () denotes the function defined as follows:

a(8)(A) E o(8(N)).

The reduction rule is defined as follows:

(LU{n} M, dU{y = {C}}p)
(£, M\ {r},0(a),0(9), 1)

whereo = {y — C} and eithera # ~ or C'is a unit clausé.

Proposition 3.1. Let C be af-formula and let’ be af-formula obtained by applying the reduction rule
onC. S(C) =S(C).

Proof:
LetC = (LU {7}, M,a,6 U {y = {D}}. i} andC’ = (£, M\ {1}.0(a),o(6). ) whereo = {a
D}.

We prove, by induction orc, that for any\ € £, S(Cj) = S(C'5(x))-

If A =+, then by definition sincé U {y — {D}})(v) = {D}, C € S(C},) iff one of the following
holds:

e Eithery € M andC = pu(v).
e OrC € S(Cp)-

Sincey € dom(§) we havey ¢ M. Hence we hav€’ € S(C|p). Thus we haves(C),) = S(C|p). By
the induction hypothesis, we ha¥&C|p) = S(C',(p)) = S(C'|p) (forany 3 € D, sinces <¢ v, we
haves # 7). Sinceo(y) = D this implies thatS(C’|,(,)) = S(C},)-

Thetransition functioris the functions mapping nodes to sets gtclauses, as defined in Definition 2.1.
2If C'is not a unit clause and = ~ then~ cannot be eliminated because it is the root node? i$ unit anda = ~ then the
(unique) node irC' becomes the new root node.
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Now assume tha # . Theno()\) = A. C € S(C)y) iff eitherC = pu(\) orC = Cr1 V...V Cy
where(a1 vV ...ax) € 6(\) and for anyi € [1..k], C; € S(C),,). By the induction hypothesis, this
last condition is equivalent toC; € S(C'5(a,))- BUto(6)(A) = a(a1) vV ...o(a) € o(6)(N) iff
a1 V... Va € §(N), thusC € S(Cp\) iff C € S(Cl|g()\)). O
3.1.2. Sharing
The above rule allows one to merge identical nodes (i.e. hodes corresponding to the same literal).

(LU{y}, M, a,d, 1)
(L, M\ A{r},0(a),0(0), 1)

If o = {y+ B} andy,3 € Mandu(y) = u(B).

For instance, th¢-formula(aAb)V (bAc) A (aAc) can be reduced tav:a A B:b) V (BAC:c) V (aAC).

Proposition 3.2. LetC be af-formula and let’ be af-formula obtained by applying the sharing rule on
C.S8(C)=S8(").

Proof:

The application conditions on the rule ensures $dt,) = S(Cj3) (sinceu(y) = u(B)). Thenitis
easy to prove, by a straightforward induction-@a (similar to the one of the proof of Proposition 3.1),
that we haveS(C|,) = S(C'),), for any nodex. 0

3.1.3. Merging

The next rule allows one to reuse existing nodes when possible for denoting clause sets occurring in a
givent-formula. This avoids duplication of information.

(L, M o, 0 U{y— SUS, vy — SUS} )
(LU{Y"} M,a,6 U{y = {7"}USLY = {7} US89 = S} )

where~” is a node not occurring irf.

For instance the-formula(a:a A 8:b A c) V §:(a A 3) can be transformed int@ A ¢) V §:(a:a A 3:D).

Proposition 3.3. Let C be aj-formula and leC’ be af-formula obtained by applying the merging rule
onC. §(C) = S(C).

Proof:

C and(’ are respectively of the formC = (£, M, «, 6, u} andC’ = (L U {y"}, M, «, &, u) where
() =SUSL () =8SUS, 8 () ={7y"1US1, 8 (y) ={7y"}USs, 8 (7") =S. LetC be aclause.
C occurs inCy, iff there exists a claus® € () s.t. C € S(Cp). D € d(y) iff either D € S, or
D € S;. By definition, since, ¢’ only differ on~,+’,~”, andC is acyclic, for any claus® € SU.S; we
haveC|p = C'|p. ThusS(Cjs) = S(C'|5) = S(C'},»). MoreoverS(Cis,) = S(C',g,). HenceC}, = C',,.
Thus, according to Lemma 2.@,, can be replaced m]h. The same holds foy'. O
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3.1.4. Elimination

The next rule allows one to eliminate useless nodes (i.e. nodes corresponding to empty clause sets).

(LU{B}, M,a,6 U{B— 0}, 1)
(L, M, a8, 1)

If6'(\) E{C|C ed(N),B¢&C).

For instance, th¢-formulaa Vv [b A (¢ VvV T)] is reducible ta: VvV b. Indeed¢ Vv T is reducible toT, thus
bA (cV T)isreducible td.

Proposition 3.4. Let C be af-formula and letC’ be af-formula obtained by applying the elimination
rule onC. S(C) = S(C').

Proof:

The application conditions on the rule ensures thalz) = 0 (sinced(3) = 0). Thus if aL-clause
a1 V...V oy containss, the set of clauses of the for@y Vv ... v C, s.t. C; € S(Cjq,) foranyi € [1..n]
must be empty. Hence removing such clauses fronCtotause set§(\) does not change the obtained
clause set. O

3.1.5. Internal Subsumption

The next rule is more complicated because it affects the claus§&gtorresponding to thé-formula
C at hand. The idea is to remove redundant (i.e. subsux@tfiuses occurring in one of the clause sets
d(A), where) is a node irC. To this purpose, we extend the usual notion of subsumptiorfaomulae.
From a theoretical point of view we could define the subsumption relation as folibsigtsumes’
iff S(C) subsumesS(C’). But this definition is not very practical, because it would urge us to explicitly
compute the set§(C) andS(C’) for checking subsumption. Since these sets are exponentially bigger
thanC andC’ this would be highly inefficient (and all the advantages of ugifigrmulae would be lost).
Thus we introduce another (stronger) definition.
Let S, S’ be two sets of\-clauses. We writeS' <*** S’ (S subsumesy’) iff for any clauseC € ',
there exists a clausg’ € Ss.t.C' C C.

Definition 3.1. (f-Subsumption) Le€ = (£, M, «, §, u) andC’ = (L', M’ o/, 8, 1)).
We writeC <" D (C 1-subsume®) iff for any 3 € £’ one of the following conditions hold:

e §(8) = {00}

o §'(B) =0.

o fe M peMandu(B) = i (B).

o B¢ M, B¢ Mandi(3)<*(3).

Proposition 3.5. If C x*** D thenS(C) x** S(D).
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Proof:
This is an immediate consequence of the definitios @f). 0

According to Proposition 3.5, f is af-formula, andD A D’ is a subs-formula occurring irC s.t.
D <" D' then we haveS(D A D') = S(D) US(D') = S(D) (sinceS(D) x*** S(D')). ThusD' is
redundant and can be eliminated. This is the purpose of the following rule. It also takes into account
the fact that some of the variablesThmay be instantiated, i.e. one must compute a substitatisn.
Do <* D’. However, an important difference with the usual case is that some of the variaBlesay
occur in the context in whic A D’ occurs. These variables cannot be instantiated during subsumption
tests, because their values depend on the context. Assume for instan€e=thdtr) v (¢(x) A ¢(a)).
Clearly there exists a substitution= {z — a} s.t. g(xz)o <™ ¢(a). However,q(a) is not redundant
because affects a variable: occurring in the context af(x) A g(a) (namely inp(x)). Removingg(a)
from the above-formula would be clearly incorrect (i.e. would change the semantics gtthemula).
In contrast, if we consider thieformulap(z) Vv (¢(y) V q(a)) theng(a) is redundant and can be removed
because the substitutign— a does not affect the variable

The next definition formalizes this idea: Lét be a set of variables (possibly empty). We write
C <3 D iff there exists a substitution s.t. dom(c) N E = () andCo <> D.

LetC = (£, M, «, 6, ) be af-formula. If 5 is aL-clause, we denote §)5(C) the set of variables
x s.t.z occurs in a literal(3’) for somes’ € M andg’ < .

Intuitively CV;(C) denotes the set of variables occurring in the “context,gf

The internal subsumption rule is defined as follows:

(L, M,a, 6 U{B— SU{C}},pn)
(L, M o, 6 U{B+— S}, )

If S contains a claus® s.t.C|p <%’ Cjc, WhereE = CVg(C).

Lemma 3.1. Let C be af-formula and leC’ be af-formula obtained by applying the subsumption rule
onC. S(C) = S(C).

Proof:

We have obvioush5(C") C S(C) (since the rule only deletes clauses in the clause set corresponding
to thet-formulag). ThusC = C'.

Now, letZ be a model of’’. Let# be a ground substitution of the variable<’inLety = 6.

We haveZl k= C'vy. Assume that = C'|gy. ThenZ |= C'\py = C|p, hence by Proposition 3.5, we
haveZ k= Ccf.

Thus by Lemma 2.1, we hag |= C'vy(C|0) 5. But by definition ofCV3(C), all the variables from
dom(o) occurring inC must occur irCig. ThusC'v(C0) s = C'0(C|c0)s-

HenceZ [= C'0(Cic0)3 = CO. 0

We have the following:

Proposition 3.6. If 0 € S(C) thenC can be reduced ta by the internal subsumption rule.

Proof:
The proof is by a straightforward induction ef. O



16 N. Peltier/ A Resolution Calculus with Shared Literals

3.2.  Unit Simplification

The idea of the last simplification rule is to use the unit clauses occurring in a-gieemulaC in order
to simplify C. If a literal / holds, theny is equivalent tap{/ — true}. Thusi A ¢ = [ A ¢’ where¢’ is

obtained frony by replacing each occurrenceldby T and each occurrence 6fby L. This idea can
be formalized by the following rule:

C: (L, M,a,d,pn)
Clu(B) A CA[L1y[T]s)a

If A € £, andd(\) contains a claus€s}, wheres € M andu(y) = u(5)°.

For instancegq : a A ((a A b) V ¢V —a) can be reduced ta:a A (b V ¢).

Proposition 3.7. LetC be af-formula. LetC’ be af-formula obtained by applying the unit simplifcation
rule onC.C' =C.

Proof:
The proof follows immediately from Lemma 2.1 and from the above remarks (wethave [ hence
Cia =LA CK[LL[T]p). O

3.3. Reducedf-Formulae

Lemma 3.2. LetC be aj-formula. The nondeterministic application of the simplification rule terminates
onC.

Proof:
LetC = (£, M, a,d, ). Itis easy to see that all the simplification ruleecept the unit simplification
rule strictly decrease the size of the considerddrmule’.

The unit simplification rule decreases tm@mber of occurrencesf the literals inC (i.e. the number
of distinct paths — or positions — fromto the considered literals). It is clear that no simplification rule
can increase this number. O

Definition 3.2. (Reduced-Formulae) Aj-formula is said to beeducediff it is irreducible by the sim-
plification rules. Thej-formula obtained from g-formula C by nondeterministic application of the
simplification rules (without the unit simplification rule) is called teeluced fornof C.

3.4. Inference Rules

In this section we extend the usual inference rules, namely the resolution and factorization rules, in order
to handlef-formulae instead of clauses.

3This is not the case of the unit simplification rule, due to the fact that the nodgs an occur elsewhere i@. Thus the
application of the rule maincreasethe number of nodes, by “duplicating” them.
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3.4.1. {-Resolution

Assume we want to apply the resolution rule between twWiormulae D and D’ on two literalsl, [¢
occurring respectively at two nodés 3’. We proceed as follows. First we remove frdh (some of)
the clauses not containirig (using the operataP’ — wg (D’) defined above) and we replateby L.
This yields a newt-formulaD”. Then we inserD” at the node? in D. All the clauses added int§(D)
during this process are resolvents of clauses initially occurri®() andS(D’) respectively.

Clearly, one application of the¢-resolution rule corresponds to several applications of the usual
resolution rule. For instance given thdormulae(a A b) V cand—cV (a’ Ab') we derive:(a Ab) V (¢ A
a’ AV'). The set of clauses corresponding to the initidrmulae argla Ve, bV e} and{—cVa',—cVb'}
respectively, and the set of clauses corresponding to the obtgifeethula is{a V ¢,b V ¢,a VvV d',a Vv
b',bvd, bV} Note that with our technique, this clause set is obtained in only one resolution step,
whereas! steps are needed if ordinary resolution is used.

Definition 3.3 above formalizes this idea. The resolution is “internal” in the sense that it applies to
a pair oft-formulae occurring at a nodeinside a giveni-formula. This is due to the fact that in our
approach, a set gfformulae is itself denoted byfaformula.

Naturally, we also need to take into account the fact that some of the variables can be instantiated
during the process (using unification). As for the subsumption rule, we have to ensure that the variables
occurring in the context are not instantiated during the process. If it is the case then we need to apply
the resolution rule at a higher level in theormula — in the worst case at the root position (in which
the context is empty). As for the usual resolution rule, some of the variables (those not occurring in the
context) are renamed prior to the application of the rule in order to avoid conflicts on the variable names
(e. g. if we try to apply the resolution rule @iiz) A —p(f(x))).

We need to introduce some further notations. Edie a set of variables. A substitutionis said to
be aFE-unifier of two literal [, ! iff we havelo = I'c andxo = z for anyz € E. As usual, two literals
[,!" E-unifiable have a most gener&tunifier (unique up to a renaming).

A E-renamingis a bijective substitutionr s.t.xo € V foranyz € V andxo = z if x € E.

A j-formulaD is said to be &-renamingof C iff there exists ak-renamings s.t. D = Co.

Definition 3.3. ({-Resolution) Let be af-formula. Let) be a node it and letC, C’ be twoA-clauses
ino(A).

Let D, D’ be twoCV,(C)-renamings of | andC .- respectively, by fresh, pairwise distinct, vari-
ables, not occurring ig.

Let [,!’ be two literals s.t. there exist$, 3’ occurring inD, D’ respectively s.t.z/(3) = [ and
p'(p)="1.

Let o be the most gener&lV, (C)-unifier of i, .

Thet-formula

R = C(D{Wy (D')[L]g) o)

is called annternal T-resolveniof C (w.r.t. the pair of nodeg, 5’ and the unifying substitutioa).

If the reduced form oD(wg (D')[L]g) so is subsumed by, then this application of the resolution
rule is said to beedundant(in this case the obtainedformula can be reduced to the original one by
internal subsumption).

It is worthwhile to mention that i& = id, then the obtained resolveR{wg (D’)[L] 5 ) 30 subsumes
the f-formulaC ¢ (thusC, can be removed).
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The reader should note that theesolution rule, in contrast to the usual resolution rule, is dissym-
metric: the resolvent af and(’ is distinct from the resolvent @’ andC. For instance the resolvent of
pVgand—qVrispV (¢ Ar),and the resolvent ofg V r andp V ¢ is (—g A p) V q. As we shall see,
only one of these two resolvents is needed for completeness

Lemma 3.3. Let C be af-formula. LetR be a resolvent of, w.r.t. two nodes3, 5’ and a unifying
substitutions. R = C.

Proof:
Obviously, we have&(C) € S(R) henceC is a logical consequence &.

LetZ be an interpretation satisfying

LetC' =C(D AD')yo. LetC € S(C'). If C is not an instance of a claused#{C), thenC is of the
form Cio vV Cy0, whereCyo € S(D A D') and for anyCs € S(Cj,) we haveC; v C3 € S(C). Since
o is aCV,(C) unifier, we haveCyo = C;. Let us assume, w.l.o.g., thé&b € S(D) (the case where
Cy € S(D') is similar). By definition there exists a substitutiérs.t. C = D§. Moreover, sincd is a
CV\(C)-renaming, we havé' 0 = C,. We haveC; € §(D), thusC26 € S(C). ThusC; v C26 € S(C).
ButCy v (8 = (C1V Cq)0 <3 (C1 V C3)o (sinced is a renaming). Hena€ is a logical consequence
of CandZ = C'.

R is of the form

C(D{wg (D)[L]g) go)n

whereD, D’ are defined as in Definition 3.3.

LetR = CI<D<W5/ ('D/)[J_]ﬁ/>5>>\. We haveS(R) - S(R/) We show thatl ‘: S(R/)

Let be an instance dR’. We havel“d = I'6. Assume thaf = D, D’.

Assume thaf |= 6. Then by Proposition 2.1 = wg (D’). By Lemma 2.1, this implies that if
I =wy (D')[L]s-

ThusZ = 1§ = I = wg(D')[L]g. But then by Lemma 2.2, this implies that =
D(wg (D)[L]g) -

ThusZ ': D,D/ =7 ): D<Wﬁ/ (D/)[L]g/>5.

By applying again Lemma 2.2 we conclude tdat R’. O

Example 3.1. We consider the following-formula.

C=p(z) Vv X[(~q(z,y) Vpy) A gz, f(y) vV (riy) Ar(f(y)))]

We apply the resolution rule on the nodeand the clausesq(x,y) V r(y) andq(z, f(y)) V (r(y) A
r(f(y))). First we compute tw@ V), (C)-renamings of these two clauses. We obtairix,y’) V p(y')
andq(z, f(y")) vV (r(y") Ar(f(y")). Note thatx is not renamed since this variable occur€in, (C).
We unify ¢(z,y") andq(z, f(y") yielding the substitution : {y/ — f(y”)}. Then we replace the literal

q(z, f(y") ing(z, f(y") V (r(y") Ar(f(y")) by L yieldingr(y”) Ar(f(y”)). We insert the obtained
T-formula into—q(z,y") V p(y'), at the node corresponding to the literal(x, y'). This yields:

B:(—q(z,y") Ar(y") Ar(f(y") V(y))-

Finally we apply the substitutiom and we insert the correspondifngormula intoC at the node\. This
yields:
C=p(x)VA:[(=q(z,y) V) Al f(y)V(ry) Ar(f(y)) AD]
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where

D = B:(—q(x, f(y") Ary”) Ar(f") Vv o(f(y"))-

Note that the rule would still be correctwis (D’) were replaced b’ in the above definition. The
next example shows the interest of applying the operatofD’).

Example 3.2. LetC = aV B:bandC’ = (3':=bV a') A c. Let us apply the-resolution rule o€, C’. We
havewg (C") = (#':=bVva’). Thenwg (C')[L]a if a’. Thus the obtainet-formulaisC(a’)s = aV (bAd’).

If we replacews (C') by C’, then we obtaim Vv (bAa’ Ac). The resultis correct, but the corresponding
clause set contains a clause ¢ which is redundant (since the clausalready occurs in the clause set
corresponding t@’).

3.4.2. Ordering Restriction of {-Resolution

Restriction strategies are essential for the efficiency of inference systems. Ordered resolution aims at
reducing the search space (more precisely the branching factor) of the rule by preventing the application
of the resolution rule on literals that are non maximal in their parent clauses (according to some fixed
ordering< between literals). This principle can be extendegl-formulae. However, since gformula
corresponds to a set of clauses, the considered literalmay be maximal in some of the clauses and

non maximal in the others. Thus, we need to delete from this set, the clauses in\(feigp.!’) is non
maximalbeforeapplying the resolution rule. Since a givefiormula can yield an exponential number

of distinct clauses, it would be very inefficient to generate this set explicitly. The simplest solution is to
replace every literal greater thaby true. More formally:

Let < be an ordering on literals. Létbe a literal. LetC = (£, M, «a,d, 1) be af-formula. We
denote byC|<; (resp.C|) thet-formula(L U {3 — 0 | 3 € M'}, M\ M, , 6, 1") whereM' is the
set of nodes’ in M s.t. u() > I (resp.u(5) > 1) andy is the restriction of: to M \ M’.

Informally C|<; is obtained fron€ by replacing any literal greater thaaccording to the considered
ordering) bytrue. This is equivalent to deleting, in the clause set denoted by-floemulaC, all the
clauses containing a literal strictly greater thian

Note that we may havét = M’ and in this cas€|; is equivalent tor .

Proposition 3.8. Let C be af-formula and let be a literal.S(C<;) C S(C). Moreover, for any clause
C € §(C<;) and for anyl’ € C, we havel’ 2 1.

Proof:
Immediate (by a straightforward induction et). O

We adapt Definition 3.3 in order to integrate ordering restrictions:

Definition 3.4. (Orderedi-Resolution) LeC be af-formula. Let) be a node ir€ and letC, C’ be two
A-clauses ini(\).

Let D, D’ be twoC V), (C)-renamings o€ andC ¢+ respectively, by new variables, not occurring in
C.

Let [,!’ be two literals s.t. there exist$, 3’ occurring inD, D’ respectively s.t.x/(3) = [ and
w”(B8") = 1. Leto be the most generalV, (C)-unifier of 1€, 1"



20 N. Peltier/ A Resolution Calculus with Shared Literals

Let& = Dy<and leté’ = D')<.
Thef-formula
C(E Wy (EN)[L]g) go)x

is called aninternal <-resolventof C (w.r.t. the pair of nodeg, 3’ and the unifying substitution).

3.4.3. j-Factorization

The factorization rule can be seen as an extension of the sharing rule defined above, in which the instan-
tiation of variables is allowed. More precisely:

Definition 3.5. (f-Factorization) LeC = (£, M, «,d, ) be af-formula. Let\ be a node inC. Let
C € 6()). Let3, 8’ be two nodes occurring ifi¢. Let o be a most generdlV, (C)-unifier of 4(3) and
u(B') ands(8) = 6(8') = 0.

LetC’ be a sharing of o w.r.t. 3, 3’. ThenC(C’), is called afactor of C.

Example 3.3. LetC : p(b,z)V (¢(z,y) Ap(y,a)). By unifying p(b, z) andp(y, a) we get thej-formula:
C:ap(b,a)V(q(a,b) A a).
We haveS(C) = {p(b,z) V q(z,y),p(b, ) V p(y, a)} andS(C) = {p(b, a) V q(a, b), p(b, a)}.

Lemma 3.4. Let C be aj-formula and letC’ be af-formula obtained front by f-factorization. Then
C'=cC.

Proof:
The proof follows from Proposition 3.3. O

4. Soundness and Refutational Completeness

4.1. A New Redundancy Criteria

In section 3 we proved that the inference and simplification rules preserve the semantics of the considered
t-formula. This entails soundness. Now, we prove that our method is refutationally complete. In fact
completeness as such is a rather trivial issue sincg-tiesolution rule simulates the usual resolution

rule: more precisely, any clause set= {C1, ..., C,} can be represented byfdormulaC = a:(C; A

...\ Cy), and any application of the resolution rule on two clausg€”; can be simulated by applying

the {-resolution rule on the root nodeg using theA-clauses corresponding & andC;. Similarly, the
factorization rule may be simulated by théactorization rule.

However, this strategy is not very useful since it is equivalent to using ordinary resolution and all the
advantages of our techniques (i.e. the extensive use of structure sharing) are lost. Therefore, we prove
the refutational completeness of our calculus in a much stronger setting, using a more efficient strategy.
Namely:

e The simplification rules can be applied as soon as possible on the consjidereaula. In partic-
ular, identical sug-formulae should be merged when possible.
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e The resolution rule is systematically applied at the innermost position in the considfenedula.
Thus resolution rule is applied at root position only if it is necessary. The following example
should clarify this point.

Consider the-formulaa:(p(x) V B:(q(y) A —g(a)). The resolution can be applied on the literals
q(y) and—q(a) yielding the empty clause. By applying theesolution rule on th¢-formula 3, we get:
a: (p(z)V B :(q(y) A—g(a) A L), ie. (after simplification by internal subsumption): p(x).

However we could also in principle (according to Definition 3.3) apply the same rule on the root
t-formulac instead of5. The reader can check that this yields the followjrAfgrmula:

a: [(p(z) VB (q(y) A—q(a)) A(p(') v B : ((p(z") v L) A =q(a))]

a: [(p(x) VB (q(y) A—qla)) A (p(') v B (p(a”) A —q(a))]

Clearly the firsti-formula subsumes the second one. The second application of the rule is not only
much more complicated than the first one, but also useless.
This idea is formalized by the following:

Definition 4.1. (Usefulness) An application of the resolution rule of-®rmulaC, a node), two A-
clausesC, C’, two nodess3, 5’ and a substitution is said to beuselessff C = C’ and if C is of the
form D v X, where)’ € A, andC|, contains no variable idom(o).

Similarly, an application of the factorization rule onrdormulaC, a node), a A-clauseC, and a
substitution is said to beuselessff C is of the formD v \', where)’ € A andC,, contains no variable
in dom(o).

4.2. Derivations and Limits

We need to introduce some definitions.

Definition 4.2. (Derivations) Aderivationis a sequencéC;);c; of t-formulae (with eitherl = N or

I = [0..n] for somen € N) s.t. for anyi = I\ {0}, C; is obtained fromC;_; by applying thej-
resolution,f-factorization, unit simplification, reduction, merging, sharing, elimination or subsumption
rule.

Let (C;)icr be a derivation, witlC; = (£, M;, o, 03, 1;). By definition, we must have; = «;
for anyi, j € I (no rule can change the root node of theormula). Moreover, the rules only add new
nodes and modify the value of(by removing or adding\-clauses), thus we have(3) = p;(5) if
B e Mi, Mj. Let oo = e ti-

A node) is said to bepersistentiff there existsk € I s.t. A € £; foralli € [ s.t.i > k. Let L, be
the set of persistent nodes.

Let X be a persistent node. Afi.-clauseC is said to bepersistentfor ), iff there existsk € I
s.t. C € §;(\) foranyi € I s.t. i > k. We denote by, (\) the set of persistent clauses for Let
Moo E Ui Mi.

We denote byim(C;);c; the t-formula: (Leo, Moo, doos foo)-
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4.3. Saturatedi-Formulae

As usual, in order to ensure completeness, we need a notion of fairness:

Definition 4.3. (Fairness) A derivatioriC;);c; is said to befair if the following holds: if for some
1 € I, the resolution (resp. factorization) rule is applicable on a given noieC; on two A-clauses
C,C" € 6;()\) (resp. on a\-clauseC'), then:

e either\ is not persistent,
e or C,C’ (resp.C) are not persistent fox,

e or there existg > i s.t. j € I and s.t. the application of the resolution (resp. factorization) rule
on\,C,C"or A\, C’,C (resp.\, C) is redundant or useless f6y.

A 7-formulaC is said to besaturatedff there is no non-redundant and non-useless application of the
resolution or factorization rules @h The next lemma states a key property of saturatfmimulae.

Lemma 4.1. Any saturated-formulaC s.t. S(C) does not contaifl] is satisfiable.

Proof:

LetC = (£, M, a, 6, ) be a saturateg-formula. We show that for any € £, S = S(C},) is saturated
(in the usual sense, i.e. that any clause deducible dyg resolution or factorization is subsumed by a
clause inS). The proof is by induction on the ordering..

Let C4, Cy be two clauses i5(C). Assume that the resolution rule is applicable(onCs. W.1.0.g.
we assume that; = [; v C; where there exists a m.g.u. Bf [ s.t. ;0 is <-maximal inC;o.

By definition there exists twd-clausesD;, Dy € (o) s.t. C; € S(C|p,) (fori = 1,2).

Let 31, 02 be the nodes corresponding to the litedalgs respectively.

We haveu(5;) = l;. Thus the resolution rule applies on the nodes3s. Assume that this appli-
cation of the resolution rule is not useless. Then by definition sinisesaturated the application of the
rule onCy, Cy or Co, C; must be redundant. W.l.o.g. we assume that the application of the rdlg 6n
is redundant (the proof fa,, C; is similar). Hence®), subsumes thg-formula

R=E& <W,Hg (&2)[L]g)pi0

whereD; is aCV, (C)-renamings o€ p, respectively, by new variables, not occurringiand where
€ = Dij;<-

Sincel; is maximal inC; andC; € S(C|p,), C;o occurs inS(&;).

This implies thatS(wgs (€2)[L] ) containsCy andS(E(wg (E2)[L])3) containsCy vV Co. Thus
S(R) contains a claus€'o Vv Cyo.

Now assume that the application of the resolution rule is useless.

Then we must havé); = Dy andD; = D V v, whereC|p contains no variable iflom(o) (in
particularly, [ cannot occur ir€| p).

By definition, C; is of the formE} v E} v I;, whereE] € S(D;C)y andE}' v I; € S(7C)y. C}, is
saturated, hence by the induction hypotheSi{g) ) is saturated. Thu§(C|,) containsEyo V Eyo.

ThereforeS(C|,) contains the clausg’ v EYo V Ejo,i.e. Ejo V E{fo V Ejo (sinceC|p contains
no variable indom(c)). But this clause subsumégo v Clo.
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The proof for the factorization rule is similar.
This implies thatS is saturated, hence by completeness of the (usual) resolution and factorization
rules, S is either satisfiable or contains O

The next lemma shows that the limit operator introduced above preserves the semantics of the con-
sideredi-formulae, in the sense that all the non-persistent clauses are redundant.

Lemma 4.2. Let (C;);cr be a fair derivationS(Co) = S(Iim(C;)icr)-

Proof:
LetD = lim(C;);c;r We have shown thaf(D) is a logical consequence 81Cy).

Now, letC be a clause i5(Cy). For anyi € I, C; is of the form(L;, M;, a, §;, ;). There exists a
clauseC’ € 0(a) s.t.C'is subsumed by a clause&{Co|cr).

Itis well-known that<***is a well-founded ordering on clause sets (up to a renaming, see for instance
[13]). But according to Lemma 3.1, < D impliesS(C) < S(D), thus<*"is a well-founded
ordering oni-formulae (up to renaming). L&t be aA-clause and let € I s.t. C'is subsumed by; ¢/
andC¢» is minimal according tes>*.

Assume that” is not persistent. The” must be deleted at some point. But this implies that there
exists a clausé® € §(a) andj € I s.t. Cj|D <sup Cijcr» which is impossible sinc€;c» would not be
subsumption-minimal.

ThusC’ is persistent Hencé‘(D|C/) C S(D). By definition, D) is obtained fromC; ¢ by
reduction. Henc®,c» <*° C;jcv. ThusC'is subsumed by a clause (D).

Lemma 4.3. Let (C;);<; be a fair derivationlim(C;),¢; is saturated.

Proof:
This follows immediately from the definition. O

Theorem 4.1. (Soundness and Completeness) [&b);-; be a fair derivation.Cy is unsatisfiable iff
there existg € I s.t.C; = 1.

Proof:
Assume that there exisise I s.t. C; = 1. Then(; is unsatisfiable. By Lemma 3.3, 3.4, 3.1 and
Proposition 3.1, 3.3, 3.2, 3.4, 3.7, we h&@ge= C; = ... = C;. Thus(y is unsatisfiable.

Assume that, is unsatisfiable. Sincé’;);c; is fair, lim(C;);cs is saturated by Lemma 4.3. By
Lemma 4.2)im(C; )1 is unsatisfiable. But then according to Lemmad&(lim(C;);cr) containdl. But
by definition any clause i (lim(C;;<;)) occurs inS(C;) for somei € I, thus there exists € I s.t.
O € S(C;). By Proposition 3.6C; can be reduced ta by internal subsumption. O

5. Polynomial Proof of the Pigeonhole Principle

In order to demonstrate the interest of the proposed calculus, we investigate its behavior on a rather
well-known (propositional) problem: thgigeonhole formuladenoted byPigHPh,, which states that
there is no injective function from a set af+ 1 pigeons into a set of holes. It is well-known that
PigHPh, admits no polynomial proof in ordinary resolution [12]. We show thatftihesolution calculus
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introduced in Section 3 refutdRigHPb, in a humber of steps that is polynomial w.r.t. the number
of holes. This immediately implies that the standard resolution calculus cannot polynomially simulate
T-resolution.

The variable(i € j) denotes the fact that pigeais in holej. We define the following propositional
clauses and clause sets:

o P,(i)¥ V-, (i € j) (pigeoni must be in some hole).

o P, E U {P,(i)} (each pigeon must be in some hole).

o hy(i,j1,72) £ =(j1 € i) V —(ja € i) (holei cannot contain pigeons and;,).

o h,(i) £ {ha(i,j1,52) | j1,j2 € [1.n+ 1], 41 # j2} (holei cannot contain two distinct pigeons).
o H, & Ui~ hn(i), (no hole contains two distinct pigeons).

The pigeonhole formula is the conjunction®f andH,,:

PigHPh, = P,, UH,,.

PigHPb, is a set of clauses, hence can be seen as a gefioofnulae (since clauses are particular
cases of-formulae).

We shall construct &-refutation ofPigHPb, whose number of steps is polynomial w.ft.

If Cis a clause and' a clause set(’ v S denotes the clause sft’ v D | D € S}. Obviously,
card(C v §) = card(S).

The following formulaT(k, k', k") expresses the fact that the ho[és+ 1..n] containat leastk”
pigeons among the pigeofis..n + 1].

T(k, K K" < \ A\ G € [k+1.n])

PC[k'.n+1],card(p)=k" i€P

where the formuldi € [k + 1..n]) expresses the fact that pigebmust be in some hole between
[k + 1.n]:

n

ielk+1n)) = \/ (icj).
j=k+1

By convention,\/,.p ¢; (resp.\;cy ¢:) is 0 (resp.1) if P is empty.
We have the following:

Lemmab.1. Foranyk € [1..n], k" € [l.n+ 1], k" € [1.n — k' + 2]
Tk, K K" =
(=(K € [k+1.n) = T(k, K +1,K"))

AT(k, K + 1,k — 1))
Moreover:
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o T(k,K k") =falseif £ > (n — k' +2).
e T(k,K',0) = true

Proof:
Assume that:(k’ € [k + 1..n]) holds. Then pigeo®’ is notin[k + 1..n]. ThusT(k, &/, k") holds iff the
holes[k + 1..n] contain at least” pigeons amongt’ + 1..n + 1] i.e. iff T(k, &’ + 1, k") holds. In this
case we also havE(k, k' + 1,k” — 1)), since obviousiT (k, k' + 1,k")) = T(k, k' + 1,k" — 1)).

If (¥ € [k + 1..n]) holds thenT(k, &', k") holds iff the hole in[k + 1..n] contain at least” — 1
pigeons among’ + 1..n + 1] hence iffT(k, k' + 1,k” — 1)) holds.

The second relation follows from the fact that.n + 1] containsatmost +1—k'+1=n—k"+2

pigeons.
The last relation follows immediately from the definition. O

LetC be af-formula, letk € [1..n],k" € [1.n + 1], k" € [0..n + 1]. We writeC € A(k, k', k") iff:
e Eithert” > (n — k' +2)andC = L;
e Ork”=0andC =T;
e Or0< k' <(n—Fk +2),and
C=[Kelk+1.n)VvC]AC"

whereC’ € A(k, k' + 1,k")andC” € A(k, k' + 1,k" —1).

Intuitively, C € A(k, ¥, k") iff C encodes the formul@(k, k', k") (according to Lemma 5.1).

We assume given the following ordering on the propositional varigblesj): (i € j) < (i’ € )
if >4 orif j =5 andi <7'.

Let C, D be twot-formulae. We writeC C D if C = A\, C;,D = A"y D; and{Cy,...,Cp} C

{D1,...,Dp}.
LetC be af-formula. We writeC € K (k) iff there existC’ C Cs.t.C" € A(k,1,n— k+1).

Outline of the proof
1. First we show thaligHPh, € (0) (Lemma 5.2).

2. Then we show that & € (k) then one can generate frafr(using a number of steps polynomial
w.r.t. the size of’) at-formulaD s.t. D € K(k + 1) (Corollary 5.1).

3. Since the size of each reducedormulaC s.t. C € K(k) is polynomial w.r.t. n (this follows
from Lemma 5.4 below), we deduce from Polnand2 (using a straightforward induction) that a
f-formulaC, s.t. C,, € K(n) can be constructed frofigHPh, in a polynomial number of steps
(indeed, computing the reduced form of a giyeformulaC s.t.C € K(k) can be done in a number
of steps that is polynomial w.r.t. the size®f

4. Finally, we show tha&(C,,) must contairid (Lemma 5.6). By Proposition 3.6, this implies that
the reduced form of,, is L which completes the proof.
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We start by proving thaRigHPb, € £(0).
Lemma 5.2. Letn € N. PigHPb, € K(0).

Proof:

By the above definition, it suffices to prove tliaC PigHPb, for someC € A(0,1,n+ 1). We show by
induction onk that for anyk € [0..n + 1], there existg}, s.t.C, C PigHPb, andC, € A(0,n+2—k, k)
(we obtain the desired result for=n + 1).

e If £ = 0then the proof is obvious since € A(0,n +2,0) andT C C. The above property holds
forCo =T.

e If k£ > 0 then by induction hypothesis we hadig ; € A(0,n + 3 — k,k — 1) for someC_; C
PigHPb,. Moreover, sincé < [1..n+ 1], we haven+2 —k € [1..n+ 1] hencePigHPb, contains
the clausé,(n+2 — k) = (n+2 — k € [0 + 1..n]). We defineC, £ P, (n + 2 — k) A Cp_1.
We haven — (n+2—-k+1)+2=k—1 < khencel € AO,n+2—k+ 1,k). Since
P.n+2—-k)vVL =Py(n+2—k), wehaveC, = (P,(n+2—k)V L) ACk_1. Thus we
deduceCj, € A(0,n + 2 — k, k).

O

Now we show how to constructiaformulaD € KC(k + 1) fromC € K(k + 1).

Let C be af-formula. Letl be a literal. We denote byu(C) the {-formula obtained front|<; by
replacing each occurrence of by 1.

We need the following:

Lemmab5.3. Letn € N. LetC be a reduced-formula s.t. C € A(k, k', k"), wherek € [0..n],
K € [l.n+1], ¥ € [0..n]. Leti < k. FromPigHPh, A C we can derive in at most + 1 steps a
t-formulaC’ s.t. cut;er41)(C’) € A(k + 1, K/, E").

Proof:

By definition, any literal occurring i€ occurs in a clauséu € [v + 1..n]), for someu > ¥
andv > k”. By definition of (u € [v + 1..n]), this implies that any literal occurring inS is of the
form (u € v) for someu > k' andv > k + 1. Thus according to the chosen ordering we must have
I< (K ek+1).

Letu € [K'..n + 1]. Sincei < k’, PigHPb, contains the clause(u € k+1) vV =(i € k+ 1)
where(u € k+1) > (i € k+ 1). We apply the resolution rule successively on each literal 1 €
k+1),(n€k+1),...,(K € k+1) using the above clauses.dfis reduced, it contains at most one
occurrence of each literél € k + 1), thus this requires at most+ 1 applications of the resolution rule.

Obviously, this replaces any occurrence of a lit¢tak k + 1) by a:((u € k +1) A=(i € k+ 1)).
LetC’ be the obtained-formula.

Let C(u,v) a subj-formula ofC s.t. C(u,v) € A(k,u,v). LetC'(u,v) be the corresponding sub-
formula of C'. We show, by induction on the pair-u, v), that we haveeut;c;11)(C'(u,v)) € A(k +
1,u,v), foranyv > 0, u > k.
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o If v = 0 then we haveC(u,v) = T thus cUt;cpy1)(C'(u,v)) = C'(u,v) = T hence
CUtic+1)(C'(u,v)) € A(k + 1, u,v

).
o If v > (n—u+2)then we haveg(u,v) = L hencecut;cj1)(C’'(u,v)) = L and the proof is
immediate.

e Otherwise, sinc® < v < (n —u + 2), we have
C(u,v) =((u e k+1..n]) VCi) ACo

whereC; € A(k,u+ 1,v)andCy € A(k,u+1,v—1)

We haveC’(u,v) = (C"” v C1) A Ch, whereC”,C}, Cl are obtained fronfu € [k + 1..n]), C; and
Co respectively by replacing any occurrence of a litdrale k£ + 1) by a:((uw € k+1) A =(i €
k+1)).

By the induction hypothesis we ha¢¢ € A(k + 1,u + 1,v) andC) € A(k+ 1, u+ 1,v — 1)
whereC? = cutey.1)(Ch) (G = 1,2).

(uelk+ln)=(wek+1)V(uek+1+1.n]). We haveu > k. The literals(u € k + 1)
are replaced by:((u € k+ 1) A —(i € k+ 1)). ThusC” is of the form(a:((u € k+ 1) A (i €
k+1))V (u € [k+ 1+ 1..n]), hencecutcr41)(C") = (u € [k + 1+ 1..n]).

Therefore, we haveut;cy1)(C'(u,v)) € A(k +1,u,v).
O

Let p be a literal. We write® < p if S is of the form A", (p; V C;), wherep; > p. Clearly, this
implies thatC|<, = T.

By definition, ifC € A(k, k', k") thenC < (k' € k + 1) (this follows immediately from the defini-
tion, using a straightforward induction dn, £”: indeed any clause i§(C) contains a literal greater or
equal thank’ € k + 1)).

The next lemma expresses the fact that two form@aé = 1,2) s.t. D; € A(k, k', k") occurring
a givent-formula can be “merged” by using the merging rule (thus there is at most-torenulaD s.t.
D e Ak, K E").

Lemmab5.4. LetC = (£, M,a,d, u) be a reduced-formula s.t.C € A(k, k', k") for k, k', k" € N.
Let Dy, D, be twot-formulae occurring i€ s.t. D; € A(k,l',1”) for anyi = 1,2 (wherel,!’ € N). If
" e [1..77, -+ 2] thenD; = Ds.

Proof:
The proof is by induction o', 1").

Sincel” € [1.n —I' 4+ 2], D; is of the form[((!' € [k + 1..n]) V D)) A D/] for i = 1,2 where
D) e A(k,I' +1,1")andD € A(k,I"+ 1,1” — 1). By the induction hypothesis, we hat¥ = Dj.
andD] = D). By irreducibility w.r.t. the sharing rule, the two occurrencegl6f [k + 1..n]) must be
identical. Then the merging rule applies aBg (for instance) can be replaced By (thus if D1 # Do
thenC is not reduced). O

The next lemma is the heart of the proof. It shows how to constfuet A(k + 1, k', k" — 1) from
C e Ak, K K").
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Lemmab5.5. Letn € N. If C € A(k,k', k"), wherek € [0..n], ¥ € [1.n + 1], ¥’ € [0..n] and
kK" < (n — k' + 2), then one can generate frafm PigHPb, in a number of steps polynomial w.rit.a
t-formulaC’ s.t.C" € A(k + 1,k k" — 1).

Proof:

We writeC € A'(k, k', k") iff C is of the formC’ A C” whereC’ € A(k, k', k") and ifk # 0 then
C" < (n+1€k).

First, we remark that we hav@ < (n+1 € k+ 1). We prove that one can generate fréha
f-formulaC’ s.t.C" € A'(k+ 1,k k" —1).

The proof is by induction o0—£', k”).

e If £ = 0 then the proof is immediate (sin¢é = T, satisfies the desired conditions).
e If k¥’ > 0, then sincé” < (n — k' + 2), C is of the form
((k/ € [k + 171]) V Cl) A Co

whereC; € A(k, k' +1,k")andCy € A(k, k' + 1,K" —1).

By the induction hypothesis, sin¢g” — 1) < (n— (¥’ 4+ 1) + 2), we deduce frong, a {-formula:
CystCoe A(k+1,K+1,kK" —2).

If ¥ = (n — k' + 2) then we have; = L (sincek” > (n — (k' + 1) + 2)). Otherwise, by the
induction hypothesis, we deduce fraina clause set’] s.t.C; € A'(k+1,k'+1,k"” —1). Thus
we can deduce frortk’ € [k +1..n]) vV C; the clause s€t(k’ € [k +1..n]) vV C}) AC) where either
Cl=L({fk' =(n—kK+2)orC; e A/(k+1,K+1,k" —1).

But(¥ e [k+1.n])=(K €k+1)V (K €[k+1+1.n]).

By Lemma 5.3, sinc&’ < k' 4 1 we can construct fronf, a clauseCy s.t. cutycr41)(Cy) €
A(k+ 1,k +1,k" —1). Moreover, we havé€, < (K e k+1) < (n+1€k+1).

By resolving thisf-formula with (k' € k + 1) v (K’ € [k + 1+ 1..n]) V C] we get:

CUlprery1)(C3) V (K € [k + 1+ 1.n]) vV Cijcpeprn-

LetCy = Cl|<(wept1)- SinceCy € A'(k+1,k'+1,k" —1), C; must be of the forn?” A7’ where
TeAk+1,K+1,K'—1)and7' < (n+1€k+1).Since(k' e k+1) < (n+1€k+1),
we haveT”’ < err1) = T. Moreover,T < i) = 7 (indeed, sincd € A(k+ 1,k +1,k" —
1), 7 contains only atoms of the forifn. . € v) for somev > k + 2, thus all the atoms ifl” are
lower than(k’ € k + 1)).

By Lemma 5.4 we haveut, ¢y 1)(Cy) = 7.
Hence after (at most) one merging step we getc [k +1+1..n]) V7.

Hence the clause sét = ((¥' € [k + 1+ 1..n]) V T) Vv C; has been generated. By definition we
haveC' € A(k+ 1,k k").

Clearly, a polynomial number of steps is required for eachistdrmulaD € A(k, k', k"). If the
t-formulae are reduced, the number of distinct siidbrmulae is bounded by? (due to Lemma
5.4). Thus, the total number of steps is polynomial.
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O

Corollary 5.1. Letn € N. If C € K(k) wherek < n. We can construct fror§ U PigHPb, in a number
of steps polynomial w.r.to af-formulaD s.t. D € K(k + 1).

Proof:
This follows immediately from Lemma 5.5. O

Lemma 5.6. Letn € N. LetC be aj-formula s.t.C € (n). S(C) containdl.

Proof:
By definition, we haveC’ C C for someC’ € A(n,1,1). We show that for anyt-formulaC’ s.t.
C' e A(n,n+2—1,1), S(C’") containdl. The proof is by induction on

e If i = 0thenl > n—(n+2—14)+2 hence the proof stems from the definitiorCofe A(k, k', k").

e Otherwise, by definition of’ € A(k, k', k"), S(C") must contain the clauses&((n + 2 — i €
[n+1..n])VS(D)) whereD € A(n,n+3—1i,1). By definition, we havén+2—i € [n+1..n]) = O
for anyi € [1..n + 1]. Moreover by induction hypothesi$(D) contains]. ThusS(C’) contains
L.

0

Theorem 5.1. Let n € N. The f-formula L can be obtained fronPigHPh, by f-resolution and-
factorization, in a number of steps that is polynomial wit.t.

Proof:
Immediate by Lemma 5.2, Lemma 5.6 and Corollary 5.1. O

6. Related works

Not surprisingly, several authors already tried to improve the efficiency of the resolution calculus by
introducing mechanisms for sharing information and avoiding redundant computations.

Our technique is obviously related to the usestiicture-sharing that is used by most existing
provers in order to represent information in a convenient and efficient way (see for instance [5]). Sharing
is ubiquitous in implementations of automated reasoning systems. However, rather than using it as a tool
for storing terms and clauses, we use it atltigical level, and take it into account when defining the
inference rules. Shared subclauses and goals can be merged, which yields shorter derivations as well as
more compact representations of the search space.

The approach presented in [14] (callgg@ramodulation without duplicatigris similar to our work,
though more concerned by the reduction of the search space than by the reduction of proof length.
Clauses are represented by graphs and inferences are performed by adding new edges into the graph.
The idea is similar to the one in this paper, but there are some differences. The method by [14] handles
equality and has the advantage that terms may be shared as well as literals and clauses. To this aim,
instead of explicitly applying the substitutions (i.e. the unifiers and renamings) generated during proof
search, the method encodes them into the graph, as equational conditions attached to the edges. More-
over, graphs may be cyclic (in our context this would mean that inferences betweemaula and the
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context in which it occurs would be allowed). A drawback is that this makes the detection of empty
clauses much more difficult; it does not terminate in general thus must be interleaved with the inference
steps. Moreover, additional information must be stored into the edges. Our method avoids this, though at
the cost of some additional redundancy. In [14], building the graph is only part of the proof search: the
other part is implicitely delegated to the algorithm for detecting empty clauses (in particular, for Horn
clauses, the entire proof search is performed by this algorithm, since the building of the graph is trivial),
whereas in our approach all the work is explicitly done by the inference rules. An advantage of our
method is the use of the sharing and merging rules, that allow one to merge identical subgoals without
having to care how they have been obtained. Notice that this feature (not shared by [14]) was essential
for constructing a polynomial refutation &igHPh,. Moreover this also simplifies the writing of the
inference rules (we make theformulae disjoint, and merge them afterward when possible). Moreover,
our technique also has the advantage that inferences may be performed without having to explicitly com-
pute the clause on which the rule is applied (only the literal on which the rule is applied is important).
This is required in [14] because one need to know the vertices to which the “replacement edges” should
be added.

It is not difficult to see that Tseitin’s extended resolution [20] polynomially simulates our technique,
when restricted to the propositional case (as recalled before, first-order versions of Tseitin’s extension
rule can also be considered). Indeed, extended resolution allows one to introduce arbitrary definitions
in the clause set, using equivalences of the fpres ¢, wherep is a variable an@ a formula. These
definitions can be proceeded as usual, after transformation into clausal form. This feature can be used
to encodef-formulae into standard clauses, simply by introducing additional propositional variables to
“name” shared subformulae. Then gudresolution rule can be simulated by repeated applications of the
resolution rule. Rather than giving a formal justification and proof, we provide an illustrating example
that should allow the reader to grasp the intuitive idea.

Example 6.1. The{-formula(p A ¢) Vv r can ge represented by the following clause set:

pV-r
qVv —r'

rvor
wherer’ is introduced as a shortcoming f@n r. Resolving the initiat-formula with—p Vv p’ yields:

(pAgAp) VT
A clause set representing thigormula can be obtained by resolving the clausesr’ and—p Vv p'.

But Tseitin's extended resolution is not usable in practice due to the huge branching factor. Our
method can be seen as a restriction of extended resolution which has the following advantages: first it
strongly restricts the kind of definitions that can be proceeded. Only the ones allowing an immediate
reduction of the size of the formula will be considered. Second the adding of the definitayrsaisic
and does not need not to be performed explicitly.

Our method is also related to the multiresolution approach described in [6] in the context of propo-
sitional logic. The idea of multiresolution is to use binary decision diagrams (see for instance [15]) to
represent sets of clauses. This yields a representation of propositional clause sets that is much more
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compact that the usual one. Moreover [6] shows how to adapt the usual resolution principle in order
to operate on these representations. Due to the more compact representation and due to the sharing of
information, one resolution step in the obtained calculus can correspaséédaalresolution steps in the

usual sense. Building on these results, [6] proposed a breath-first search strategy similar to the Davis and
Putnam procedure [8]. As our procedure, the multiresolution calculus refutes the pigeonhole problem in
polynomial time. It is worth mentioning that [16] proposed a related approach, also based on breath-first
search and also taking advantage of the expressive power of BDD's to reduce the search space, but us-
ing a very different and original way of representing the search space. Roughly speaking, the idea is to
denote as a BDD the set of sets of “active” clauses, i.e. of clauses that remains to satisfy in the partial
models constructed so far.

Though based on similar principles, our technique is essentially different from the one of [6] (and
[16]) due to the very different way of representing informati¢ridrmulae w.r.t. BDD). Moreover the
procedures of [6, 16] are (as far as we are aware) restricted to propositional logic, whereas our method
handles first-order logic as well.

In [17], a calculus has been proposed for reducing the length of resolution proofs, by factoring some
literals. The idea is completely different from the one considered in the present paper, since in [17] only
literals belonging to the same clause can be shared, whereas the principlefogtwdution calculus
is to share literals or disjunction of literals between distinct clauses. On the other hand, the calculus
presented in [17] has the advantage that the common pdistirictliterals can be shared. For instance
the clausep(a) V p(b) is expressed as a constrained clayse;) if © = a or x = b. The patterp(z)
is shared between the two terms. Thus the two presented approaches are orthogonal. Their combination
(and/or merging) could deserve to be considered.

7. Conclusion

We have presented a method for reducing proof length in resolution-based calculi, which tries to avoid,
when possible, the duplication of information. This is done by an extensive use of sharing at the logical
level. We designed inference and simplification rules, and we proved their soundness and refutational
completeness. Using the well-known pigeonhole problem as an example, we have shown that our tech-
nique — when restricted to propositional calculus — can reduce the length of the proof by an exponential
factor.

Future works include the implementation of a theorem-prover based on the proposed rules in order
to estimate their practical performances. Moreover, the extension of our technique to equational theorem
proving (usingt-extensions of the paramodulation or superposition rules) deserves to be considered.
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