
Extended Resolution Simulates Binary

Decision Diagrams

Nicolas Peltier

Leibniz-IMAG - CNRS, 46, avenue Felix Viallet, 38031 Grenoble cedex, France,
Nicolas.Peltier@imag.fr

Abstract

We prove that binary decision diagrams [1] can be polynomially simulated by the
extended resolution rule of [2]. More precisely, for any unsatisfiable formula φ, there
exists an extended resolution refutation of φ where the number of steps is polyno-
mially bounded by the maximal size of the BDDs built from the formulae occurring
in φ.

Key words: Extended Resolution, Binary Decision Diagrams

1 Introduction

Resolution [3] is the most widely studied approach in propositional theorem
proving. Many refinements and variants of the resolution rule have been de-
signed and their theoretical complexity and practical performances have been
throughoutly investigated. The most well-known and widely used variant is the
Davis-Putnam-Logemann-Loveland procedure [4] (although the DPLL proce-
dure is very different at first sight from the resolution method, it can be shown
that it is equivalent to tree-like resolution proof procedures). More recent, very
efficient, approaches, such as the ones described in [5–7], can also be charac-
terized as variants (refinements) of the resolution method.

Other approaches use Binary Decision Diagrams (or BDDs, see for example
[1]). Informally speaking, a BDD can be seen as a “graphical” representation
of an “if-then-else” formula: the leaves represent the possible values of the
function (0 or 1), whereas each node corresponds to a choice point, with two
successors depending on the value of a given propositional variable v. A key
idea is that common subtrees may be shared instead of being duplicated, which
may yield very concise representations (using directed acyclic graphs instead of
trees). BDDs are built inductively, starting from the atomic subformulae and

Preprint submitted to Elsevier Science 25 September 2006

using logical operations on BDDs (∨,∧, . . .). The complexity of this procedure
depends on the maximal size of the BDDs corresponding to the subformulae
occurring in the considered problem.

Practical experimentations have shown that these two approaches – resolu-
tion and BDDs – are incomparable. Indeed, there exist benchmarks for which
BDD-based systems outperform resolution-based provers by several orders of
magnitude (particularly in VLSI design [8]), whereas resolution is much better
on other examples (see for instance [9]). Recently [10], it has been shown that
these two techniques are also incomparable from a theoretical point of view, in
the sense that none of them can polynomially simulate the other one. There
exist sequences of formulae for which the length of the shortest resolution proof
is exponential w.r.t. the size of the corresponding BDDs and conversely, there
exist formulae having a short resolution proof but containing a subformula
with a very complex BDD.

As stated in [10], a very natural question arises: is it possible to extend the
resolution rule in such a way that it simulates BDDs ? In the present paper, we
show that the resolution method, augmented by the extension rule originally
defined by Tseitin [2], polynomially simulates BDDs in the following sense:
for any unsatisfiable formula φ, there exists a refutation proof of φ in which
the number of (resolution and extension) steps is polynomially bounded by the
maximal size of the reduced BDDs corresponding to the subformulae occurring
in φ (of course the reduced BDD of φ itself is 0 if φ is unsatisfiable). It is
worth mentioning that the usual algorithm to compute the reduced OBDD of
a formula is polynomially bounded by the same maximum [1].

2 Some basic notions

In this section we briefly review some basic notions and notations that are
necessary for the understanding of our work.

Formulae are built as usual on a set of propositional variables P , using the
(complete) set of connectives ∨,∧,⇔,¬. φ ⇒ ψ is used as a shortcut for the
formula ¬φ ∨ ψ.

A literal is either a propositional variable or the negation of a propositional
variable. A clause is a finite set of literals (interpreted as a disjunction). The
empty clause is denoted by 2.

For any formula φ, we denote by SF(φ) the set of formulae occurring in φ.

An interpretation is a subset of P . The notions of model, satisfiability, . . . are

2

defined as usual.

A resolvent of two clauses C,D is a clause of the form (C \ {a})∪ (D \ {¬a})
where a is a variable s.t. a ∈ C and ¬a ∈ D.

If φ is a formula, then |φ| denotes the size of φ (i.e. number of symbols occurring
in φ).

Extended Resolution

We use the same definition of the extension rule as in [11]. Informally, the
idea is to extend the resolution calculus by introducing new propositional
variables during proof search. These variables may be seen as new “names”
for a propositional “lemma” (not necessarily occurring in the original formula).
More precisely, if S is a clause set and a, b are variables occurring in S, then
an extension of S is obtained by adding to S the following clauses:

{¬c ∨ ¬a ∨ ¬b, a ∨ c, b ∨ c}

where a, b are variables and c is a new variable, not occurring in S. These
three clauses express the fact that c ⇔ (¬a ∨ ¬b). c may be seen as a new
“name” for the formula ¬a∨¬b. By repeated applications of this rule one can
generate any propositional formula.

An extended derivation from S is a sequence (S0, . . . , Sn) of clause sets s.t.
S0 = S and for any i ∈ [1..n] Si is obtained from Si−1 by resolution or
extension. As well known a clause S is unsatisfiable iff there exists a refutation
of S i.e. a derivation from S to a clause set containing 2. Note that all the
extension steps can be performed before the resolution steps (this is obviously
not restrictive).

It is well known [12,13] that extended resolution is much more powerful than
resolution (w.r.t. proof complexity). In particular, it polynomially simulates
the most powerful known proof systems for propositional logic (see for instance
[14]).

Binary Decision Diagrams

We recall some basic notions about BDDs. We only provide a short overview of
the main definitions and results. The interested reader should refer for example
to [1] for a more detailed presentation.

A binary decision diagram (BDD for short) is a dag (directed acyclic graph)

3

with a unique root such that each node is labeled either by a propositional
variable or by the truth value 1 or 0. Any node labeled by a variable has
two successors, a 0-successor and a 1-successor. Nodes labeled by 1 or 0 have
no successor. A BDD is said to be ordered w.r.t. a total ordering < among
propositional variables iff for any node ∆ labeled by a propositional variable
v, the labels of the successors of ∆ are strictly lower than v.

If ∆ is a BDD then var(∆) denotes the label of ∆, ∆1 and ∆0 denote the
1-successor and 0-successor of ∆ respectively (or nil if ∆ is labeled by 0 or
1). We denote by 0 and 1 two BDDs labeled by a 0 and 1 respectively (no
confusion is possible). We write ∆ ≡ ∆′ iff var(∆) = var(∆′), ∆0 = ∆′0 and
∆1 = ∆′1.

We denote by |∆| the size of ∆ (number of nodes).

A BDD can be used to denote a boolean function: If ∆ ≡ 0 (resp. 1) then the
truth value of ∆ in any interpretation I is 0 (resp. 1). Otherwise, the value of
∆ in an interpretation I is identical to the value of ∆v, where v denotes the
truth value of var(∆) in I.

The notion of models, satisfiability etc can be extended to BDD.

There exist two simplification rules useful for reducing the size of the BDDs
(without affecting their semantics).

• If for a given node ∆, the 0-successor and 1-successor of ∆ are identical,
then ∆ is useless and can be removed. Any link to ∆ in the BDD is replaced
by a link to ∆1 (= ∆0). This simplification rule is called “elimination”. We
write ∆ →elim ∆′ if ∆′ is obtained from ∆ by an elimination step.

• If the BDD contains two nodes ∆,∆′ s.t. ∆ ≡ ∆′ then obviously the boolean
functions corresponding to ∆ and ∆′ are identical hence one of the nodes
is deleted and replaced by the other one. This simplification rule is called
“merging”. We write ∆ →merge ∆′ if ∆′ is obtained from ∆ by a merging
step.

Any BDD irreducible w.r.t. the two above simplification rules is said to be
“reduced”. It can be shown that reduced ordered BDDs are unique (up to a
renaming of the nodes).

If particular, if φ is a formula, there exists a unique reduced ordered BDD
bdd(φ) equivalent to φ.

Given a BDD ∆ one can compute a BDD ∆′ = ¬∆ s.t. the truth value of
∆′ is the negation of the truth value of ∆. Similarly, given two BDDs ∆1 and
∆2 one can compute a BDD ∆ = ∆1 ∨ ∆2 (resp. ∆1 ∧ ∆2, ∆1 ⇔ ∆2) s.t.
the truth value of ∆ is the disjunction (resp. conjunction, equivalence) of the

4

truth values of ∆1 and ∆2. More precisely, we have (see [1] for details):

• ¬∆
def
= 1 if ∆ = 0.

• ¬∆
def
= 0 if ∆ = 1.

• If var(∆) = v then var(¬∆)
def
= v, (¬∆)1 def

= ¬∆1 and (¬∆)0 def
= ¬∆0.

• ∆1 ∨∆2
def
= ∆2 if ∆1 ≡ 0;

• ∆1 ∨∆2
def
= ∆1 if ∆2 ≡ 0;

• ∆1 ∨∆2
def
= 1 if ∆i ≡ 1 for some i = 1, 2;

• ∆1 ∧∆2
def
= 0 if ∆i ≡ 0 for some i = 1, 2;

• ∆1 ∧∆2
def
= ∆2 if ∆1 ≡ 1;

• ∆1 ∧∆2
def
= ∆1 if ∆2 ≡ 1;

• ∆1 ⇔ ∆2
def
= ∆2 if ∆1 ≡ 1.

• ∆1 ⇔ ∆2
def
= ∆1 if ∆2 ≡ 1.

• ∆1 ⇔ ∆2
def
= ¬∆2 if ∆1 ≡ 0.

• ∆1 ⇔ ∆2
def
= ¬∆1 if ∆2 ≡ 0.

• If var(∆1) = var(∆2) = v then var(∆1 ?∆2)
def
= v, (∆1 ?∆2)

1 def
= ∆1

1 ? ∆2
1

and(∆1 ?∆2)
0 def

= ∆1
0 ?∆2

0 (where ? = ∨,∧,⇔).
• If var(∆1) > var(∆2) then: var(∆1 ?∆2) = var(∆1), (∆1 ?∆2)

1 def
= ∆1

1 ?∆2

and (∆1 ?∆2)
0 def

= ∆1
0 ?∆2 (where ? = ∨,∧,⇔).

• If var(∆1) < var(∆2) then: var(∆1 ?∆2) = var(∆2), (∆1 ?∆2)
1 def

= ∆1 ?∆2
1

and (∆1 ?∆2)
0 def

= ∆1 ?∆2
0 (where ? = ∨,∧,⇔).

Note that the obtained BDDs are not reduced in general. They have to be
reduced afterwards using the merging and elimination rules. For instance if
∆1,∆2 are the BDD corresponding to p and ¬p respectively, then we have
var(∆1 ∧∆2) = p, (∆1 ∧∆2)

1 = (∆1 ∧∆2)
0 = 0, hence ∆1 ∧ ∆2 can be

reduced to 0 by elimination.

The two properties stated in the proposition below will be useful in the fol-
lowing.

Proposition 1 Let ∆1,∆2 be two BDDs. Let ? = ∨,∧,⇔.

(1) The size of ∆1 ?∆2 is at most |∆1| × |∆2|.
(2) The number of merging and elimination steps required to compute the

reduced ordered BDD corresponding to the non-reduced OBDD ∆1 ?∆2 is
bounded by |∆1 ?∆2|.

Proof:

(1) By definition, any BDD occurring in ∆1 ? ∆2 is of the form ∆′
1 ? ∆′

2,
where ∆′

1,∆
′
2 occur respectively in ∆1 and ∆2. Thus the size of ∆1 ?∆2

is bounded by |∆1| × |∆2|.
(2) This is immediate since the elimination and merging rules strictly de-

crease the number of nodes.

5

2

Transformation into clausal form

The first problem that we have to solve for simulating BDDs is the trans-
formation into clausal form. It is well-known that the standard clausification
algorithm is exponential. We use the (structure-preserving) clausal transfor-
mation algorithm firstly introduced in [2], based on a renaming of the subfor-
mulae. Of course, there exist many useful refinements of this algorithm (see
for instance [15,16]) but we prefer to use a simpler version, adapted in order
to better suit our purposes.

We introduce a function Cl mapping each formula φ into a sat-equivalent set of
clauses Cl(φ). Let ψ → pψ be a function mapping the formulae in SF(φ)∪{¬ψ |
ψ ∈ SF(φ)} ∪ {ψ ⇒ ψ′, ψ′ ⇒ ψ,¬(ψ ⇒ ψ′),¬(ψ′ ⇒ ψ) | (ψ ⇔ ψ′) ∈ SF(φ)}
to pairwise distinct propositional variables not occurring in φ.

First, we define inductively the following function mapping each formula φ to
a clause set Def(φ) defining the predicate symbols pφ and p¬φ corresponding
to φ and ¬φ (only the implication pφ ⇒ φ is needed).

If p is a propositional variable then Def(p)
def
= {¬p¬p ∨ ¬p,¬pp ∨ p}.

Otherwise:

Def(φ ∨ ψ)
def
= {¬pφ∨ψ ∨ pφ ∨ pψ,¬p¬(φ∨ψ) ∨ p¬φ,¬p¬(φ∨ψ) ∨ p¬ψ}
∪Def(φ) ∪ Def(ψ).

Def(φ ∧ ψ)
def
= {¬pφ∧ψ ∨ pφ,¬pφ∧ψ ∨ pψ,¬p¬(φ∧ψ) ∨ p¬φ ∨ p¬ψ}
∪Def(φ) ∪ Def(ψ).

Def(φ⇔ ψ)
def
= {¬pφ⇔ψ ∨ pφ⇒ψ,¬pφ⇔ψ ∨ pψ⇒φ,

¬p¬(φ⇔ψ) ∨ p¬(φ⇒ψ) ∨ p¬(ψ⇒φ),

¬pφ⇒ψ ∨ p¬φ ∨ pψ,¬p¬(φ⇒ψ) ∨ pφ,¬p¬(φ⇒ψ) ∨ p¬ψ,
¬pψ⇒φ ∨ p¬ψ ∨ pφ,¬p¬(ψ⇒φ) ∨ pψ,¬p¬(ψ⇒φ) ∨ p¬φ,

}
∪Def(φ) ∪ Def(ψ).

Def(¬φ)
def
= {¬p¬¬φ ∨ pφ} ∪ Def(φ).

Intuitively, Def(φ) expresses the fact that for any subformula ψ occurring in

6

φ, we have: pψ ⇒ ψ and p¬ψ ⇒ ¬ψ. Then we define:

Cl(φ)
def
= Def(φ) ∪ {pφ}.

Lemma 1 Let φ be a formula. φ is satisfiable iff Cl(φ) is satisfiable. Moreover
the size of Cl(φ) is polynomial w.r.t. the size of φ.

3 Simulating Binary Decision Diagrams by Resolution

We need to introduce some further notations and definitions, essentially useful
for improving the readability of the forthcoming proofs.

If C is a clause and S a set of clauses, we denote by C ∨ S the set of clauses
{C ∨ D | D ∈ S}. Obviously, C ∨ S contains exactly |S| clauses (where |S|
denotes the number of clauses in S).

A BDD-naming is a partial function γ mapping BDDs to clause sets, s.t. for
any ∆ ∈ dom(γ):

• either γ(∆) = {2} and ∆ ≡ 0;
• or γ(∆) = ∅ and ∆ ≡ 1;
• or γ(∆) = {{v}}, where v is a propositional variable (we have possibly

∆ ≡ 0, 1).

We denote by named(γ) the set of BDDs ∆ s.t. γ(∆) = {{v}}. In this case
the variable v is denoted by lγ(∆). v can be seen as a “name” associated to
the BDD ∆.

Note that the propositional variable v occurring in the BDD-naming is not
related to the variable labeling ∆. v can be seen as a “name” given to the
BDD ∆.

Let γ be a BDD-naming. We write S Cγ ∆ iff:

• Either ∆ ≡ 1 and S = ∅;
• Or ∆ ≡ 0 and S = {2};
• Or ∆1,∆0 ∈ dom(γ), S = (¬a ∨ γ(∆1)) ∪ (a ∨ γ(∆0)), where a = var(∆).

Note that γ(∆1) and γ(∆0) are clause sets. Thus S contains 2, 1 or 0 clause(s)
depending on ∆, γ(∆1) and γ(∆0).

If for any BDD Γ occurring in named(γ), lγ(Γ) is equivalent to ∆ and if S Cγ ∆
then it is clear that S and ∆ must be equivalent (i.e. must have the same truth
value in any interpretation).

7

A clause set S encodes a BDD ∆ w.r.t. a BDD-naming γ iff the following
conditions hold:

• ∆ ∈ named(γ);
• For any Γ ∈ named(γ), there exists a clause set S(Γ) Cγ Γ s.t. the clause

set ¬lγ(Γ) ∨ S(Γ) is a subset of S.

From this definition, we see that a clause set S encodes ∆ w.r.t. γ iff it satisfies
the following properties.

• If ∆ is labeled by a propositional variable a and the 1-successor of ∆ is ∆′,
then S must contain the clause ¬p ∨ ¬a ∨ q, where p, q are the names of
∆,∆′ respectively (i.e. p = lγ(∆), q = lγ(∆

′)).
• If ∆ is labeled by a propositional variable a and the 0-successor of ∆ is ∆′,

then S must contain the clause ¬p∨a∨q, where p, q are the names of ∆,∆′.
• If ∆ is labeled by a propositional variable a and the 1-successor of ∆ is 0,

then S must contain the clause ¬p ∨ ¬a, where p is the name of ∆.
• If ∆ is labeled by a propositional variable a and the 0-successor of ∆ is 0,

then S must contain the clause ¬p ∨ a, where p is the name of ∆.

Note that S may contain other clauses that those specified above. In particular,
if S ′ ⊇ S and S encodes ∆ w.r.t. γ, then S ′ also encodes ∆ w.r.t. γ.

It follows from these definitions that if S encodes ∆ then for any BDD Γ
occurring in ∆, Γ ∈ dom(γ). Moreover, for any Γ ∈ named(γ), either I 6|=
¬lγ(Γ) or Γ and S(Γ) have the same truth value in I. In particular, if Γ ≡ 0
then either γ(Γ) = 2 or ¬lγ(Γ) must occur in S.

This definition allows one to encode BDDs into clause sets. Now, we show that
we can simulate all the standard operations on BDDs, i.e. elimination, merg-
ing, conjunction and disjunction, in polynomial time, using only the resolution
and extension rules.

First we show that one can simulate the elimination rule. The idea is very
simple: it suffices to apply the resolution rule on the variable corresponding to
the eliminated node. Before giving the technical details, we provide a simple
illustrating example.

Example 1 Let us consider the following BDD.

8

a

b b

c0 1

∆

0 1

0 1 0 1

0 1

This BDD is encoded by the following clause set:

1 ¬p ∨ a ∨ q1
2 ¬p ∨ ¬a ∨ q2
3 ¬q1 ∨ b

4 ¬q1 ∨ ¬b ∨ r

5 ¬q2 ∨ b ∨ r

6 ¬r ∨ c ∨ s

7 ¬r ∨ ¬c ∨ s

where s = lγ(∆).

By resolving the clauses 6 and 7 we obtain: 8 ¬r ∨ s

By resolving the clause 4 and 5 with clause 8 we eliminate all the occurrences
of r and replace them by s.

9 ¬q1 ∨ ¬b ∨ s

10 ¬q2 ∨ b ∨ s

The reader can check that the clause set {1, 2, 3, 9, 10} encodes the following
BDD.

a

b b

0 1∆

0 1

0 1 0 1

9

This BDD is obviously obtained from the initial one by applying the elimination
rule.

Lemma 2 Let ∆ be a BDD. Let S be a clause set encoding ∆ w.r.t. a BDD-
naming γ. Let ∆′ be a BDD s.t. ∆ →elim ∆′.

One can generate from S in at most 2× |∆′|+ 1 resolution steps a clause set
S ′ s.t. S ′ encodes ∆′ w.r.t. a BDD-naming γ′ s.t. γ(∆) = γ′(∆′).

Proof: Since ∆ →elim ∆′, there exists a BDD Γ in ∆ s.t. Γ1 = Γ0 and
Γ 6≡ 1, 0. Since S encodes ∆ w.r.t. γ, Γ ∈ dom(γ). Since Γ 6≡ 1, 0 this implies
that Γ ∈ named(γ). Since S encodes ∆ w.r.t. γ this implies that S contains
the clause sets ¬lγ(Γ) ∨ ¬p ∨ γ(Γ1) and ¬lγ(Γ) ∨ p ∨ γ(Γ0) where p = var(Γ).
We have Γ0 = Γ1. Thus by resolution on p we get the clause ¬lγ(Γ) ∨ γ(Γ1)
(denoted by (?) in the following).

Now, let Ω be a BDD occurring in ∆′. By definition, Ω is obtained from a
(unique) BDD anc(Ω) occurring in ∆ by replacing at most one occurrence
of the BDD Γ by Γ1 (= Γ0). We define the following BDD-naming: γ′(Ω)

def
=

γ(anc(Ω)), for any Ω occurring in ∆′.

Clearly, ∆′ ∈ named(γ′). Now, we prove, by induction on the size of the BDD,
that for any Ω occurring in ∆′ s.t. Ω ∈ named(γ′), one can construct a clause
set ¬lγ′(Ω) ∨ S ′ s.t. S ′ Cγ′ Ω.

Obviously anc(Ω) occurs in ∆. If anc(Ω) 6∈ named(γ) then by definition Ω 6∈
named(γ′) which is impossible. Thus anc(Ω) ∈ named(γ) whence S contains
a clause set ¬lγ(anc(Ω)) ∨ S ′′ s.t. S ′′ Cγ anc(Ω). If anc(Ω) ≡ 1 then Ω ≡ 1
hence the proof is completed (it suffices to take S ′ = ∅).

If anc(Ω) ≡ 0 then S ′′ = 2 and Ω ≡ 0. Thus S ′′ Cγ Ω. Moreover γ′(Ω) =
γ(anc(Ω)). Thus S contains the clause ¬lγ(Ω) ∨ 2 where 2 Cγ′ Ω and the
proof is completed.

Otherwise, let p = var(anc(Ω)). By definition S ′′ = ¬p ∨ γ(anc(Ω)1) ∪ p ∨
γ(anc(Ω)0).

If anc(Ω)1 6= Γ, then anc(Ω)1 = anc(Ω1). In this case γ(anc(Ω)1) =
γ(anc(Ω1)) = γ′(Ω1). Hence S contains the clause set ¬lγ(anc(Ω))∨¬p∨γ′(Ω1).

If anc(Ω)1 = Γ then S contains ¬lγ(anc(Ω)) ∨ ¬p ∨ γ(Γ). Moreover γ(Γ) =
lγ(Γ). By applying the resolution rule between this clause set and the clause
¬lγ(Γ) ∨ γ(Γ1) constructed before (see (?)) we get: ¬lγ(anc(Ω)) ∨ ¬p ∨ γ(Γ1),
i.e. ¬lγ′(Ω) ∨ ¬p ∨ γ′(Γ1).

Thus in all the cases ¬lγ′(Ω) ∨ ¬p ∨ γ′(Γ1) can be generated. Similarly we

10

obtain the clause set ¬lγ′(Ω)∨ p∨ γ′(Γ0). Hence we have obtained a clause set
¬lγ′(Ω) ∨ S ′ s.t. S ′′ Cγ′ Ω, which completes the proof.

One resolution steps is needed for generating ¬lγ(Γ)∨γ(Γ1), then at most two
resolution steps is needed for each symbol in dom(∆′). Thus the number of
resolution steps is bounded by 2× |∆′|+ 1 (the extension rule is not needed).
2

Now we show the merging rule can be simulated.

Again, before proving the general result, we consider a simple example.

Example 2 We consider a BDD encoded by the following clause set.

1 ¬p ∨ a ∨ q1
2 ¬p ∨ ¬a ∨ q2
3 ¬q1 ∨ b ∨ r1
4 ¬q1 ∨ ¬b ∨ r2
5 ¬q2 ∨ b ∨ r1
6 ¬q2 ∨ ¬b ∨ r2

a

b b

∆ ∆′

0 1

0
10

1

At this point, we apply the extension rule in order to introduce a new variable
q s.t. q ⇔ (q1 ∨ q2). This yields the clauses

7 q ∨ ¬q1
8 q ∨ ¬q2
9 ¬q ∨ q1 ∨ q2

Hence by resolution:

10 ¬p ∨ a ∨ q (res 1,7)

11 ¬p ∨ ¬a ∨ q (res 2,8)

12 ¬q ∨ b ∨ r1 (res 9,3,5)

13 ¬q ∨ ¬b ∨ r2 (res, 9,4,6)

11

The obtained clause set encodes the following BDD (obtained by applying the
merging rule on the initial one):

a

b

∆ ∆′

0 1

0 1

Lemma 3 Let ∆ be a BDD. Let S be a clause set encoding ∆ w.r.t. a BDD-
naming γ. Let ∆′ be a BDD s.t. ∆ →merge ∆′.

One can construct in at most 10 + 2 × |∆′| resolution or extension steps a
clause set S ′ s.t. S ′ encodes ∆′ w.r.t. a BDD-naming γ′ s.t. γ(∆) = γ′(∆′).

Proof: By definition, ∆ contains two equivalent BDDs Γ1 and Γ2 and any
BDD Ω in ∆′ is obtained from a BDD anc(Ω) in ∆ by replacing the BDD Γ2

by Γ1.

First we show how to define the BDD-naming γ. We distinguish two cases.

• Γi ∈ named(γ), for any i = 1, 2.
By definition, S contains two clause sets of the form ¬lγ(Γi)∨Si (i = 1, 2)

where Si Cγ Γi. Since Γ1 and Γ2 are equivalent, it is clear that we must have
S1 = S2.

Let i = 1, 2. We apply the extension rule on the variable lγ(Γi) (the rule
is applied with a = b = lγ(Γi)). This introduces a new variable pi (not
occurring in S) and the following clauses: pi ∨ lγ(Γi),¬pi ∨ ¬lγ(Γi).

Then we apply the extension rule on the variables p1 and p2. This intro-
duces a new variable p (not occurring in S) and the following clauses: pi∨ p
(i = 1, 2), ¬p ∨ ¬p1 ∨ ¬p2. By resolving these last clauses with the clauses
pi ∨ lγ(Γi) and ¬pi ∨ ¬lγ(Γi), we get ¬lγ(Γi) ∨ p, ¬p ∨ lγ(Γ1) ∨ lγ(Γ2).

By resolving the last clause with ¬lγ(Γi) ∨ Si (i = 1, 2), we get ¬p ∨ S1

(since S1 = S2). This takes (exactly) 2 extension steps and (at most) 8
resolution steps (since |S1| ≤ 2).

We define a BDD-naming γ′ as follows. γ′(Ω)
def
= γ(anc(Ω)) if Ω 6= Γi and

γ′(Γ1)
def
= p.

• Γi 6∈ named(γ) for some i = 1, 2. In this case we have either Γi ≡ 1 or
Γi ≡ 0. In both cases we define γ′(Ω)

def
= γ(anc(Ω)) for any Ω 6= Γi and

γ(Γ1) = γ(Γi).

We know that ∆′ ∈ named(γ′). Now, we prove that for any BDD Ω in ∆′ s.t.
Ω ∈ named(γ′) one can generate a clause set ¬γ′(Ω) ∨ S ′ s.t. S ′ Cγ′ Ω.

12

By definition S contains a clause set ¬lγ(anc(Ω)) ∨ S ′′ where S ′′ Cγ anc(Ω).

If Ω = Γ1 then the proof is obvious, in this case (since Ω ∈ named(γ′)) we
must have Γ1,Γ2 ∈ named(γ) hence we have generated a clause set ¬p ∨ S1.
Otherwise, we have anc(Ω) 6= Γi thus γ(anc(Ω)) = γ′(Ω).

If anc(Ω) ≡ 1 then Ω ≡ 1 hence the proof is immediate (it suffices to take
S ′ = ∅).

If anc(Ω) = 0 then S ′′ = 2. Moreover Ω ≡ 0 hence S ′′ Cγ′ Ω and the proof is
completed.

Otherwise, let q = var(anc(Ω)). S ′′ contains a clause ¬q ∨ γ(anc(Ω)1). If
anc(Ω)1 6= Γi, then anc(Ω1) = anc(Ω)1. Thus S ′′ contains the clause ¬q ∨
γ(anc(Ω1)) = ¬q∨ γ′(Ω1). Therefore the clause set lγ(anc(Ω))∨¬q∨ γ′(Ω1) =
lγ′(Ω) ∨ ¬q ∨ γ′(Ω1) can be generated.

If anc(Ω)1 = Γi, then Ω1 = Γ1. We distinguish two cases.

If there exists j s.t. Γj 6∈ named(γ), then by definition we have Γ1 ≡ Γ2 ≡ 1
or Γ1 ≡ Γ2 ≡ 0 and γ′(Ω1) = γ(Γj). If Γi 6∈ named(γ) then γ(Γi) = γ(Γj) =
γ′(Ω1) hence ¬lγ(anc(Ω)) ∨ S ′′ contains the clause ¬lγ(anc(Ω)) ∨ ¬q ∨ γ′(Ω1).
If Γi ∈ named(γ) then by definition S contains a clause ¬lγ(Γi) ∨ S ′′′ where
S ′′′ Cγ Γi. We have S ′′′ = {{γ′(Ω1)}}. Thus by resolution from the clauses
¬lγ(anc(Ω))∨¬q∨lγ(anc(Ω)1) and ¬lγ(Γi)∨S ′′′ we get ¬lγ(anc(Ω))∨¬q∨γ′(Ω1).

If Γj ∈ named(γ) for any j = 1, 2, then by applying the resolution rule between
¬lγ′(Ω) ∨ ¬q ∨ γ(anc(Ω)1) and the clause ¬lγ(Γi) ∨ p generated above, we get
¬lγ′(Ω) ∨ ¬q ∨ p i.e. ¬lγ′(Ω) ∨ ¬q ∨ γ′(Γ1) = ¬lγ′(Ω) ∨ ¬q ∨ γ′(Ω1).

Thus in all the cases the clause set ¬lγ′(Ω)∨¬q∨γ′(Ω1) can be generated. By
symmetry we can also generate the clause set ¬lγ′(Ω) ∨ q ∨ γ′(Ω0).

This takes at most 2 resolution steps for each BDD Ω in ∆′.

2

Lemmata 4 and 5 show that one can compute the disjunction and conjunction
(respectively) of two BDDs. The idea is – given two BDDs ∆1,∆2 encoded by
a clause set w.r.t. a BDD-naming γ – to use the extension rule to generate
the formula lγ(∆1)∨ lγ(∆2) (resp. lγ(∆1)∧ lγ(∆2)). Afterwards, the resolution
rule is used to generate the clauses encoding ∆1 ∨∆2 and ∆1 ∧∆2.

Lemma 4 Let S be a clause set. Assume that S encodes two BDDs ∆1 and
∆2 w.r.t. γ. If S contains a clause of the form ¬u ∨ γ(∆1) ∨ γ(∆2), then one
can generate a clause set S ′ in at most 14×|∆1|×|∆2| resolution or extension

13

steps s.t. S ′ encodes ∆1 ∨∆2 w.r.t. a BDD-naming γ′ s.t. lγ′(∆1 ∨∆2) = u.

Proof: For each pair (Γ1,Γ2) 6= (∆1,∆2) s.t. Γi occurs in ∆i and Γi ∈
named(∆i), we apply the extension rule with a = b = lγ(Γi). This yields
the clauses pi(Γ1,Γ2) ∨ lγ(Γi) and ¬pi(Γ1,Γ2) ∨ ¬lγ(Γi) (for i = 1, 2) where
pi(Γ1,Γ2) is a new propositional variable. Then by applying again the extension
rule on the variables p1(Γ1,Γ2), p2(Γ1,Γ2) we obtain q(Γ1,Γ2)∨ pi(Γ1,Γ2) and
¬q(Γ1,Γ2)∨¬p1(Γ1,Γ2)∨¬p2(Γ1,Γ2). By resolution we get: q(Γ1,Γ2)∨¬lγ(Γi)
(i = 1, 2) and ¬q(Γ1,Γ2) ∨ lγ(Γ1) ∨ lγ(Γ2) i.e. ¬q(Γ1,Γ2) ∨ γ(Γ1) ∨ γ(Γ2).

This takes 2 extension steps and 4 resolution step for each pair (Γ1,Γ2), hence
6× |∆1| × |∆2| steps.

Any BDD occurring in ∆1 ∨∆2 is of the form Γ1 ∨ Γ2 where Γi occurs in ∆i

(with possibly Γi ≡ 1, 0). We define γ′ as the extension of γ to the BDD of
the form Γ1 ∨ Γ2 where Γi occurs in ∆i satisfying the following property: If
Γ1,Γ2 ∈ named(γ) then γ′(Γ1∨Γ2)

def
= {{q(Γ1,Γ2)}} if (Γ1,Γ2) 6= (∆1,∆2) and

γ′(∆1 ∨∆2)
def
= {{u}}.

Note that γ′ is well defined since Γ1 ∨ Γ2 6= Γ′1 ∨ Γ′2 if Γ1 6= Γ′1 or Γ2 6= Γ′2.

By definition, for any Γ1,Γ2 occurring in ∆1,∆2 respectively, if Γi ∈ named(γ)
for any i = 1, 2 then the clause ¬lγ′(Γ1∨Γ2)∨lγ(Γ1)∨lγ(Γ2) has been generated.
Moreover, if Γ1,Γ2 6= ∆1,∆2 we have also generated two clauses of the form
lγ′(Γ1∨Γ2)∨¬lγ(∆i) for any i = 1, 2 (this is not true for Γ1,Γ2 = ∆1,∆2 since
in this case lγ′(Γ1 ∨ Γ2) = u).

By definition, since ∆1,∆2 ∈ named(γ) we have ∆1 ∨∆2 ∈ named(γ′).

Let Γ ∈ named(γ′). We prove that one can construct a clause set ¬lγ′(Γ) ∨ S ′
s.t. S ′ Cγ′ Γ. By definition Γ is of the form Γ1 ∨ Γ2 where Γi occurs in ∆i

(i = 1, 2).

If Γ1 ≡ 1 or Γ2 ≡ 1 then Γ1 ∨Γ2 ≡ 1, hence the proof is immediate (it suffices
to take S ′ = ∅).

If Γ1 ≡ 0 then Γ
def
= Γ2. Since Γ ∈ named(γ′) we must have Γ2 ∈ named(γ).

By definition S contains a clause set ¬lγ(Γ2) ∨ S2 where S2 Cγ Γ2. Moreover
γ(Γ) = γ′(Γ). The same holds if Γ2 ≡ 0.

Now assume that Γi 6≡ 0, 1. Then Γi ∈ named(γ) hence S contains two clause
sets ¬lγ(Γi) ∨ Si where Si Cγ Γi. Let ri = var(Γi). We assume, w.l.o.g. that
r1 ≥ r2 (the other case is symmetric). By definition, var(Γ1 ∨ Γ2) = r1. We
have Si = (¬ri ∨ γ(Γi1)) ∪ (ri ∨ γ(Γi0)).

We distinguish two cases.

14

• If r1 = r2 = r, then (Γ1 ∨ Γ2)
1 = Γ1

1 ∨ Γ2
1.

By applying the resolution rule between ¬lγ(Γi)∨Si and the clause ¬q(Γ1∨
Γ2)∨ lγ(Γ1)∨ lγ(Γ2) generated above, we obtain ¬q(Γ1 ∨Γ2)∨¬r∨ γ(Γ1

1)∨
γ(Γ2

1) i.e. ¬lγ′(Γ1 ∨ Γ2) ∨ ¬r ∨ γ(Γ1
1) ∨ γ(Γ2

1).
Assume that Γ1

1 and Γ2
1 occur in named(γ). Then, since Γi

1 6= ∆i we
have generated the clauses lγ′(Γ1

1 ∨ Γ2
1)∨¬lγ(Γi

1) (i = 1, 2) thus after two
resolution steps we obtain: ¬lγ′(Γ1 ∨ Γ2) ∨ ¬r ∨ γ′(Γ1

1 ∨ Γ2
1) i.e. ¬lγ′(Γ1 ∨

Γ2) ∨ ¬r ∨ γ′((Γ1 ∨ Γ2)
1).

If Γ1
1 6∈ named(γ) then we have either Γ1

1 ≡ 0 or Γ1
1 ≡ 1. If Γ1

1 ≡ 1
then (Γ1 ∨ Γ2)

1 ≡ 1 hence γ′(Γ1 ∨ Γ2) = ∅. Thus the clause set ¬lγ′(Γ1 ∨
Γ2)∨¬r ∨ γ′((Γ1 ∨ Γ2)

1) is empty. If Γ1
1 ≡ 0, then γ′((Γ1 ∨ Γ2)

1)
def
= γ(Γ2

1).
Moreover γ(Γ1) = 2 thus the clause ¬lγ′(Γ1 ∨ Γ2) ∨ ¬r ∨ γ(Γ1

1) ∨ γ(Γ2
1) is

equivalent to ¬lγ′(Γ1 ∨ Γ2) ∨ ¬r ∨ γ′((Γ1 ∨ Γ2)
1).

The same holds if Γ2
1 6∈ named(γ). Thus in each case, the clause set

¬lγ′(Γ1 ∨ Γ2) ∨ ¬r ∨ γ′((Γ1 ∨ Γ2)
1) can be generated.

• Now assume that r1 > r2. In this case (Γ1 ∨ Γ2)
1 = Γ1

1 ∨ Γ2. By applying
the resolution rule between ¬lγ(Γ1) ∨ S1, and ¬lγ′(Γ1 ∨ Γ2) ∨ γ(Γ1) ∨ γ(Γ2)
we obtain ¬lγ′(Γ1 ∨ Γ2) ∨ ¬r1 ∨ γ(Γ1

1) ∨ γ(Γ2).
If Γ1

1 occurs in named(γ), then we have generated the clauses lγ′(Γ1
1 ∨

Γ2)∨¬lγ(Γ1
1) and lγ′(Γ1

1 ∨Γ2)∨¬lγ(Γ2) thus after two resolution steps we
obtain: ¬lγ′(Γ1∨Γ2)∨¬r1∨γ′(Γ1

1∨Γ2) i.e. ¬γ′(Γ1∨Γ2)∨¬r1∨γ′((Γ1 ∨ Γ2)
1).

Otherwise, we have either Γ1
1 ≡ 1, hence in this case ¬lγ′(Γ1 ∨ Γ2) ∨

¬r1 ∨ γ′(Γ1 ∨ Γ2
1) is empty, or Γ1

1 = 0 and in this case Γ1
1 ∨ Γ2 = Γ2

and γ(Γ1
1) = 2 thus ¬lγ′(Γ1 ∨ Γ2) ∨ ¬r1 ∨ γ(Γ1

1) ∨ γ(Γ2) is equivalent to
¬lγ′(Γ1 ∨ Γ2) ∨ ¬r1 ∨ ∨γ′(Γ2

1 ∨ Γ2).

In both cases the clause set ¬lγ′(Γ1 ∨ Γ2)∨¬var(Γ1 ∨ Γ2)∨ γ′((Γ1 ∨ Γ2)
1) has

been generated, in at most 4 resolution steps. By symmetry we also generate
the clause set ¬lγ′(Γ1 ∨ Γ2) ∨ var(Γ1 ∨ Γ2) ∨ γ′((Γ1 ∨ Γ2)

0) Hence we have
generate a clause set ¬lγ′(Γ1 ∨ Γ2) ∨ S ′′ where S ′′ Cγ′ Γ1 ∨ Γ2. This takes at
most 8 resolution steps for each pair (Γ1,Γ2). 2

The relation ∼ is inductively defined as follows: we write ∆1 ∼ ∆2 if either
∆1 ∈ {1, 0} or ∆2 ∈ {1, 0} or l∆1 = l∆2 and ∆1

1 ∼ ∆2
1 and ∆1

0 ∼ ∆2
0.

Informally ∆1 ∼ ∆2 if ∆1,∆2 only differ by their constant nodes.

Lemma 5 Let S be a clause set. Assume that S encodes two BDDs ∆1 and
∆2 w.r.t. a BDD-naming γ. If S contains two clauses of the form ¬u∨ γ(∆i)
(i = 1, 2), then one can generate a clause set S ′ in at most 14 × |∆1| × |∆2|
resolution or extension steps s.t. S ′ encodes ∆1 ∧∆2 w.r.t. a BDD-naming γ′

s.t. lγ′(∆1∧∆2) = u. Moreover if ∆1 ∼ ∆2 then the construction requires only
14×min(|∆1|, |∆2|) steps.

Proof: For each pair (Γ1,Γ2) 6= (∆1,∆2) s.t. Γi occurs in ∆i and ∆i ∈

15

named(γ), we apply the extension rule on the variables lγ(Γ1) and lγ(Γ2).

This yields the clauses p(Γ1,Γ2) ∨ γ(Γi) (i = 1, 2) and ¬p(Γ1,Γ2) ∨ ¬lγ(Γ1) ∨
¬lγ(Γ2). Then by applying again the extension rule with a = b = p(Γ1,Γ2) we
obtain q(Γ1,Γ2)∨ p(Γ1,Γ2) and ¬q(Γ1,Γ2)∨¬p(Γ1,Γ2). By resolution we get:
¬q(Γ1,Γ2) ∨ γ(Γi) (i = 1, 2) and q(Γ1,Γ2) ∨ ¬lγ(Γ1) ∨ ¬lγ(Γ2). This takes 2
extension steps and 4 resolution steps.

We define γ′ as an extension of γ to the BDDs of the form Γ1 ∧ Γ2 where
for any i = 1, 2, Γi occurs in ∆i and Γi ∈ named(γ) satisfying the following
properties: γ′(Γ1∧Γ2)

def
= q(Γ1,Γ2) if (Γ1,Γ2) 6= (∆1,∆2) and γ′(∆1∧∆2)

def
= u.

Notice that γ′ is well defined since Γ1 ∧ Γ2 6= Γ′1 ∧ Γ′2 if Γ1 6= Γ′1 or Γ2 6= Γ′2.

By definition, since ∆1,∆2 ∈ named(γ) we have ∆1 ∧ ∆2 ∈ named(γ′). We
prove that for any Γ ∈ named(γ′), one can construct a clause set ¬lγ′(Γ1 ∧
Γ2) ∨ S ′ s.t. S ′ Cγ′ Γ1 ∧ Γ2. By definition any Γ ∈ named(γ′) is of the form
Γ1 ∧ Γ2 where Γi occurs in ∆i and Γi ∈ named(γ′) (i = 1, 2). S must contain
two clause sets of the form ¬lγ(Γi) ∨ Si where Si Cγ Γi.

If Γ1 ≡ 0 then Γ1 ∧ Γ2 = 0. Moreover, we have S1 = 2, thus ¬lγ(Γ1) occurs
in S. By resolving this clause with ¬lγ′(Γ1 ∧ Γ2) ∨ γ(Γi) we get ¬lγ′(Γ1 ∧ Γ2),
hence the proof is completed (since 2 Cγ′ Γ1 ∧Γ2). The same holds if Γ2 ≡ 0.

If Γ1 ≡ 1 then Γ1 ∧ Γ2 = Γ2. From ¬lγ(Γ2) ∨ S2 and ¬lγ′(Γ1 ∧ Γ2) ∨ γ(Γ2) we
get ¬lγ′(Γ1 ∧ Γ2)∨ S2. Moreover, S2 Cγ′ Γ2 hence the proof is completed. The
same holds if Γ2 ≡ 1.

Now assume that Γi 6≡ 0, 1. Let ri = var(Γi). By definition Si is of the form
¬ri ∨ γ(∆i

1) ∪ ri ∨ γ(∆i
0) We assume, w.l.o.g. that r1 ≥ r2 (the other case is

symmetric). By definition, var(Γ1 ∧ Γ2) = r1.

We distinguish two cases.

• If r1 = r2 = r, then (Γ1 ∧ Γ2)
1 = Γ1

1 ∧ Γ2
1.

By applying the resolution rule between ¬lγ(Γi) ∨ Si and ¬lγ′(Γ1 ∧ Γ2) ∨
γ(Γi) we obtain ¬lγ′(Γ1 ∧ Γ2) ∨ ¬r ∨ γ(Γi1).

If Γ1
1 and Γ2

1 occur in named(γ) then we have generated the clauses
lγ′(Γ1

1∧Γ2
1)∨¬lγ(Γ1

1)∨¬lγ(Γ2
1) thus after two resolution steps we obtain:

¬lγ′(Γ1 ∧ Γ2) ∨ ¬r ∨ γ′(Γ1
1 ∧ Γ2

1) i.e. ¬lγ′(Γ1 ∨ Γ2) ∨ ¬r ∨ γ′((Γ1 ∧ Γ2)
1).

If Γ1
1 6∈ named(γ) then we have either Γ1

1 ≡ 1 or Γ1
1 ≡ 0.

If Γ1
1 ≡ 0 then (Γ1 ∧ Γ2)

1 ≡ 0 ≡ Γ1
1. If Γ1

1 ≡ 1, then (Γ1 ∧ Γ2)
1 = Γ2

1.
In both cases, there exists j = 1, 2 s.t. (Γ1 ∧ Γ2)

1 = Γj
1. But in this case

¬lγ′(Γ1∧Γ2)∨¬r∨γ(Γj1) is equivalent to ¬lγ′(Γ1∧Γ2)∨¬r∨γ((Γ1 ∨ Γ2)
1)

hence the proof is completed.
The same holds if Γ2

1 6∈ named(γ).
• Now assume that r1 > r2. In this case (Γ1 ∧ Γ2)

1 = Γ1
1 ∧ Γ2. By applying

16

the resolution rule between ¬lγ(Γ1)∨S1, and ¬lγ′(Γ1∧Γ2)∨ lγ(Γ1) we obtain
¬lγ′(Γ1 ∧ Γ2) ∨ ¬r1 ∨ γ(Γ1

1). Moreover, we also have generated the clause
¬lγ′(Γ1 ∧ Γ2) ∨ lγ(Γ2).

If Γ1
1 ∈ named(γ), we have generated the clause lγ′(Γ1

1∧Γ2)∨¬lγ(Γ1
1)∨

¬lγ(Γ2) (since Γ1
1 6= ∆1) thus after two resolution steps we obtain ¬lγ′(Γ1∧

Γ2) ∨ ¬r1 ∨ ¬lγ′(Γ1
1 ∧ Γ2).

If Γ1
1 6∈ named(γ) then Γ1

1 must be equal to 1 or 0 and the proof follows
as in the previous case.

In both cases the clause ¬lγ′(Γ1 ∧ Γ2) ∨ ¬r1 ∨ γ′((Γ1 ∧ Γ2)
1) has been gener-

ated, in at most 4 resolution steps. By symmetry we also generate the clause
¬lγ′(Γ1 ∧ Γ2) ∨ ¬r1 ∨ γ′((Γ1 ∧ Γ2)

0) Hence we have generated a clause set
¬lγ′(Γ1 ∧ Γ2) ∨ S ′′ where S ′′ Cγ′ Γ1 ∧ Γ2. We used 14 inference steps for each
pair (Γ1,Γ2) s.t. Γi occurs in ∆i.

If ∆1 ∼ ∆2 then we are always in case 1 above. Hence we only need to compute
BDDs of the form Γ1 ∧ Γ2, where Γ1,Γ2 correspond to the BDDs occurring
at the same position p in ∆1,∆2 respectively. The number of pairs is thus
bounded by the number of positions occuring both in ∆1 and ∆2. Hence only
14×min(|∆1|, |∆2|) steps are needed. 2

If φ is a formula then we denote by Sbbd(φ) the maximal size of the reduced
BDDs of the formulae occurring in φ. More formally: Sbbd(φ)

def
= max{|bdd(ψ)| |

ψ ∈ SF(φ)}.

Using the above lemmata, it is easy to show that extended resolution can
simulate BDD construction and simplification:

Theorem 1 Let φ be a formula. Using the resolution and extension rules,
one can generate from Cl(φ) a clause set S encoding bdd(φ) w.r.t. a BDD-
naming γ s.t. γ(φ) = {{pφ}}. Moreover the total number of steps is bounded
by c× Sbbd(φ)4 × |φ| for some constant c.

Proof: We show that this property is true for any formula ψ or ¬ψ, s.t.
ψ ∈ SF(φ) (in particular it is true for φ).

The proof is by induction on the set of formulae.

• If ψ is an atom p, then Cl(φ) must contain a clause of the form {¬pψ ∨ p}.
By definition bdd(ψ) is labeled by p and we have ψ1 ≡ 1, ψ0 ≡ 0. Clearly,
{p} = {p ∨2} ∪ ¬p ∨ ∅ hence {p} Cγ bdd(ψ). Similarly S contains a clause
{¬p¬ψ ∨ ¬p} and {¬p} Cγ bdd(¬ψ). Thus the proof is completed.

• ψ is the negation of a formula ψ′. By induction hypothesis one can construct
a clause set encoding ψ′ and ¬ψ′. Thus one can construct a clause set
encoding ψ. Moreover, one can construct a clause set ¬pψ ∨ S ′ s.t. S ′ Cγ

17

bdd(ψ′). Moreover Cl(φ) contains a clause ¬p¬¬ψ′ ∨pψ. From this clause and
the clause set ¬pψ ∨ S ′ we obtain ¬p¬¬ψ′ ∨ S ′, which completes the proof
since obviously bdd(ψ′) is identical to bdd(¬¬ψ′) (up to a renaming of the
nodes).

• If ψ is the conjunction of two formulae ψ1 and ψ2. Cl(ψ) contains two
clauses ¬pψ ∨ pψi

(for i = 1, 2). By Lemma 5 we generate a clause set S ′ s.t.
S ′ encodes bdd(ψ1)∧ bdd(ψ2) w.r.t. a BDD-naming γ′ s.t. γ′(ψ1 ∧ ψ2) = pψ.
By Lemmata 2 and 3 we can obtain from S ′ a clause set S ′′ encoding the
reduced form of bdd(ψ1)∧ bdd(ψ2) (i.e. bdd(ψ)) w.r.t. a BDD-naming γ′′ s.t.
γ′′(bdd(ψ)) = γ′(bdd(ψ1)∧ bdd(ψ2)) = pψ. Since the number of merging and
elimination steps is necessarily bounded by the size of bdd(ψ1) ∨ bdd(ψ2)
(see Point 2 in Proposition 1) and since the size of bdd(ψ1) ∨ bdd(ψ2) is
at most Sbbd(φ)2 (by Point 2 in Proposition 1) it is clear that the total
number of rules is polynomially bounded by Sbbd(φ). The construction of
bdd(ψ1 ∧ ψ2) takes at most 14 × Sbbd(φ)2 inference steps, then according
to Lemma 2 and Lemma 3 its reduction takes at most 10 + 2 × Sbbd(φ)2

steps for each reduction rule, hence at most 10 × Sbbd(φ)2 + 2 × Sbbd(φ)4

steps (since according to Proposition 1, the number of rules is bounded by
Sbbd(φ)2). Thus the number of steps is bounded by c × Sbbd(φ)4 for some
constant c sufficiently high.

Similarly, Cl(ψ) must contain a clause ¬p¬ψ∨p¬ψ1 ∨p¬ψ2 . Thus according
to Lemma 4 we generate a clause set S ′ encoding bdd(¬ψ1) ∨ bdd(¬ψ2). By
Lemma 2 and 3 we can obtain the reduced form of bdd(¬ψ1) ∨ bdd(¬ψ2),
i.e. bdd(¬ψ1 ∨ ¬ψ2) = bdd(¬ψ). Again, the number of steps is bounded by
c× Sbbd(φ)4.

• If ψ is the disjunction of two formulae ψ1 and ψ2. Cl(ψ) contains a clause
¬pψ ∨ pψ1 ∨ pψ2 . By Lemma 4 we generate a clause set S ′ s.t. S ′ encodes
bdd(ψ1)∨bdd(ψ2) w.r.t. a BDD-naming γ′ s.t. γ′(ψ1∨ψ2) = pψ. By Lemmata
2 and 3 we can obtain from S ′ a clause set S ′′ encoding the reduced form
of bdd(ψ1)∨ bdd(ψ2) (i.e. bdd(ψ)) w.r.t. a BDD-naming γ′′ s.t. γ′′(bdd(ψ)) =
γ′(bdd(ψ1) ∨ bdd(ψ2)) = pψ.

Similarly, Cl(ψ) must contain two clauses ¬p¬ψ ∨ p¬ψi
for i = 1, 2. Thus

according to Lemma 5 we generate a clause set S ′ encoding bdd(¬ψ1) ∧
bdd(¬ψ2). By Lemma 2 and 3 we can obtain the reduced form of bdd(¬ψ1)∧
bdd(¬ψ2), i.e. bdd(¬ψ1 ∧ ¬ψ2) = bdd(¬ψ).

As for conjunctions, the total number of steps in bounded by c×Sbbd(φ)4.
• If ψ = (ψ1 ⇔ ψ2) then Cl(ψ) contains the clauses:

¬pψ1⇔ψ2 ∨ pψ1⇒ψ2

¬pψ1⇔ψ2 ∨ pψ2⇒ψ1

¬p¬(ψ1⇔ψ2) ∨ p¬(ψ1⇒ψ2)

¬p¬(ψ1⇔ψ2) ∨ p¬(ψ2⇒ψ1)

Moreover, it also contains the clauses defining ψ1 ⇒ ψ2 and ψ2 ⇒ ψ1,
namely:

18

¬pψ1⇒ψ2 ∨ p¬ψ1 ∨ pψ2

¬p¬(ψ1⇒ψ2) ∨ pψ1

¬p¬(ψ1⇒ψ2) ∨ p¬ψ2

¬pψ2⇒ψ1 ∨ p¬ψ2 ∨ pψ1

¬p¬(ψ2⇒ψ1) ∨ pψ2

¬p¬(ψ2⇒ψ1) ∨ p¬ψ1

Using the same principle as in the two previous cases, we apply Lemma 4
to generate a clause set encoding the OBDD ∆1,∆2 corresponding respec-
tively to the formulae ¬ψ1 ∨ ψ2 and ¬ψ2 ∨ ψ1. Similarly, we apply Lemma
5 to construct the OBDD ∆′

1,∆
′
2 corresponding respectively to ¬ψ1 ∧ ψ2

and ψ1 ∧ ¬ψ2. As usual, this takes 14 × Sbbd(φ)2 steps for each construc-
tion. The size of the obtained BDDs is bounded by Sbbd(φ)2. Moreover by
construction we have ∆1 ∼ ∆2 ∼ ∆′

1 ∼ ∆′
2.

By applying again Lemma 5 we get a clause set encoding the OBBDs
∆1 ∧∆2 and ∆′

1 ∧∆′
2 (corresponding respectively to ψ1 ⇔ ψ2 and ¬(ψ1 ⇔

ψ2)). Since the size of the BDDs ∆1,∆2,∆
′
1,∆

′
2 is bounded by Sbbd(φ)2 and

since ∆1 ∼ ∆2 ∼ ∆′
1 ∼ ∆′

2 this takes 14× Sbbd(φ)2 inference steps and the
size of the obtained BDD is at most Sbbd(φ)2. By applying Lemma 3 and 2
we obtain the reduced OBDD corresponding to ψ1 ⇔ ψ2 and ¬(ψ1 ⇔ ψ2)
in at most (10 + 2× Sbbd(φ)2)× Sbbd(φ)2 inference steps.

As we have seen, at most c × Sbbd(φ)4 steps are needed for each subformula
hence c× Sbbd(φ)4 × |φ| are needed for the whole formula φ. 2

As an important result we have:

Corollary 1 Let φ be an unsatisfiable formula. There exists an extended refu-
tation of Cl(φ) containing a number of steps polynomially bounded by Sbbd(φ).

Proof: This follows immediately from Theorem 1 since bdd(φ) = 0 hence ¬pφ
can be generated in a polynomial number of steps. But pφ occurs in Cl(φ). 2

4 Conclusion

We have proven that extended resolution polynomially simulates BDDs. As
such, this result is mostly of theoretical interest, since extended resolution is
not very useful in practice due to the huge branching factor of the extension
rule (no successful propositional prover uses this rule). However, our proof also
gives a hint of the formulae that can be considered for the extension steps,

19

which can greatly decrease the search space. A natural follow-up of the present
work is to search for other extensions of the resolution method that are both
less general and less costly than the extension rule, but still powerful enough
to polynomially simulate BDDs.

Recently two new approaches [17,18] have been proposed for solving the SAT
problem. These approaches are completely distinct and unrelated, but share
some similarities: both are based on breath-first search (in the spirit of the
original Davis and Putnam procedure), and use BDD (or more precisely ZDD,
Zero-Suppressed Binary Decision Diagrams) for representing the search space
(ZDD are used to represents sets of clauses in [17] and sets of clause sets in
[18]). Both are strictly more powerful than resolution. It would be interesting
to know whether these approaches can be simulated by extended resolution,
using the same principle as in the present paper.

References

[1] R. Bryant, Symbolic boolean manipulation with ordered binary decision
diagrams, ACM Computing Surveys (1992) 23 (3).

[2] G. S. Tseitin, On the Complexity of Derivation in Propositional Calculus,
in: A. Slisenko (Ed.), Studies in Constructive Mathematics and Mathematical
Logics, 1968.

[3] J. A. Robinson, A machine-oriented logic based on the resolution principle, J.
Assoc. Comput. Mach. 12 (1965) 23–41.

[4] M. Davis, G. Logemann, D. Loveland, A Machine Program for Theorem
Proving, Communication of the ACM 5 (1962) 394–397.

[5] J. A. Marques-Silva, K. Sakallah, GRASP: A Search Algorithm for
Propositional Satisfiability, IEEE Trans. Computer 48 (5) (1999) 506–521.

[6] M. Sheeran, G. St̊almark, A tutorial on St̊almark’s proof procedure for
propositional logic, in: Volume 152 of Lecture Notes in Computer Science,
Springer Verlag, 1998, pp. 82–99.

[7] J. F. Groote, J. P. Warners, The propositional formula checker HeerHugo, in:
I. Gent, H. van Maaren, T. Walsh (Eds.), SAT20000: Highlights of Satisfiability
Research in the year 2000, Frontiers in Artificial Intelligence and Applications,
Kluwer Academic, 2000, pp. 261–281.

[8] C. Meinel, T. Theobald, Algorithms and Data Structures in VLSI Design:
OBDD - Foundations and Application, Springer, 1998.

[9] T. Uribe, M. Stickel, Ordered Binary Decision Diagrams and the Davis-
Putnam Procedure, in: J.-P. Jouannaud (Ed.), First conference on Constraints
in Computational Logic, 1994.

20

[10] J. F. Groote, H. Zantema, Resolution and binary decision diagrams cannot
simulate each other polynomially, Discrete Appl. Math. 130 (2) (2003) 157–
171.

[11] O. Kullmann, On a generalization of extended resolution, Discrete Applied
Mathematics 96-97 (1999) 149–176.

[12] S. Cook, The Complexity of Theorem Proving Procedures, in: Proc. of the 3th
annual ACM Symposium on the Theory of Computing, 1971, pp. 151–158.

[13] A. Haken, The Intractability of Resolution, Theoretical Computer Science 39
(1985) 297–308.

[14] S. Cook, R. Reckhow, The Relative Efficience of Propositional Proof Systems,
The Journal of Symbolic Logic 44 (1) (1979) 36–50.

[15] T. Boy de la Tour, An optimality result for clause form translation, Journal of
Symbolic Computation 14 (1992) 283–301.

[16] A. Nonnengart, C. Weidenbach, Computing Small Clause Normal Form, in:
A. Robinson, A. Voronkov (Eds.), Handbook of Automated Reasoning, Vol. I,
Elsevier Science, 2001, Ch. 6, pp. 335–367.

[17] P. Chatalic, L. Simon, Multi-Resolution on compressed sets of clauses,
in: Twelfth International Conference on Tools with Artificial Intelligence
(ICTAI’00), 2000, pp. 2–10.
URL http://www.lri.fr/ simon/recherche/papiers/ictai00.ps.gz

[18] D. B. Motter, I. L. Markov, A compressed breadth-first search for satisfiability,
in: ALENEX, 2002, pp. 29–42.

21

