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Abstract. We de�ne a proof procedure that allows for a limited form of
inductive reasoning. The �rst argument of a function symbol is allowed to
belong to an inductive type. We will call such an argument an index. We
enhance the standard superposition calculus with a loop detection rule,
in order to encode a particular form of mathematical induction. The
satis�ability problem is not semi-decidable, but some classes of clause
sets are identi�ed for which the proposed procedure is complete and/or
terminating.

1 Introduction

We consider �rst-order clauses in which some of the function or predicate symbols
are indexed by a particular kind of terms. The di�erence between these indices
and the usual arguments is that the former are interpreted as ground terms
constructed on a given signature (i.e. on an inductively de�ned domain), whereas
the latter are interpreted arbitrarily (in the usual way). Consider the following
example:

p0(a) ∧ (∀i ∀x pi(x)⇒ ps(i)(f(x))) ∧ ∀x ¬pn(x)

This formula is unsatis�able if the constant n is interpreted as a term con-
structed on the signature {0, s}, i.e. as an element of N. Indeed, for any m ∈ N,
the formula pm(fm(a)) can be derived from the �rst two conjuncts, yielding a
contradiction with the third conjunct. However, if the indices are interpreted as
ordinary terms, then the formula is obviously satis�able. If the value of n is �xed
(i.e. n = 1, 2, . . .) then any �rst-order prover can easily establish the unsatis�a-
bility of the formula. However, proving that it is unsatis�able for every n ∈ N
is a much harder problem, which obviously requires the use of mathematical
induction. The previous formula can be viewed as a schema of clause sets, in the
sense that, to transform this set into a standard clause set, one has to replace the
�parameter� n by a ground term sm(0). Schemata of formulæ arise naturally in
many applications of Automated Theorem Proving, in particular for formalizing
parameterized systems (for instance circuits depending on the number of bits or
layers [14]), for the modelling of dynamic systems (where the indices encode the
time: pi(t) holds i� p(t) is true at instant i), or for the formalization of inductive
proofs in mathematics (the index then represents the induction parameter, see
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[5] for an example of use of this technique). In this paper, we devise a proof
procedure for testing the satis�ability of such formulæ. The proposed inference
system uses the usual rules of the superposition calculus (with a speci�c formal-
ism in which parameters are abstracted away from the clauses), together with a
new rule which encodes a form of mathematical induction. Due to well-known
theoretical limitations, the satis�ability problem is not semi-decidable in general
(see Proposition 1), but we devise some additional criteria that ensure com-
pleteness or termination. The indices are not necessarily natural numbers: they
can be interpreted as any ground term on a given signature, provided all the
(non-constant) symbols are monadic (i.e. the indices are interpreted as words).

The rest of the paper is structured as follows. In Section 2 we de�ne the
syntax and semantics of clausal logic with indices. In Section 3, we adapt the
usual superposition calculus. In Section 4 we de�ne a loop detection rule that
strictly increases the power of the superposition calculus and we show examples
of application. In Section 5 and 6, some abstract conditions ensuring refutational
completeness and/or termination are devised. In Section 7 we provide an example
of a syntactic class of clause sets ful�lling the previous conditions and Section 8
concludes the paper.

Related work

Our approach is strongly related to the �superposition calculus for �xed domain�
procedure de�ned in [16]. Actually, the �superposition part� of our calculus is
essentially equivalent to that in [16] and also to that in [7], which is designed to
handle �hybrid� reasoning, i.e. reasoning combining the use of a theory-speci�c
procedure with the superposition calculus for handling the generic part of the
proof. However, in our approach the use of the �xed domain terms is more re-
stricted: they only appear as distinguished arguments in the terms and not as
ordinary arguments. Furthermore, we only consider formulæ with a unique pa-
rameter. This distinction between indices and ordinary terms reduces the scope
of the method but permits to obtain much stronger completeness and decid-
ability results. The proof procedure in [16] is not complete in general, since,
for refuting the considered formula, an in�nite set of empty constrained clauses
must be generated in some cases. Some completeness and decidability results are
presented in [15], however they are based on many additional conditions which
do not hold in our case: all the clauses must be Horn, all the symbols must
be monadic etc. The loop detection rule proposed in the present paper is also
very di�erent from the inductive rules de�ned in [16] and [15]. Therefore, the
two approaches can be viewed as complementary (a more detailed comparison
is provided in Section 4). Our work is also strongly related to inductive theorem
proving. Explicit induction approaches (see for instance [10] or [8]) are often
used by proof assistants, and powerful heuristics are employed to derive auto-
matically the appropriate induction schemes [11]. Implicit induction schemes are
used in rewrite-based theorem provers [9], whereas inductionless induction (see
for example [17, 12]) uses proof by consistency to reduce the inductive validity to
a mere satis�ability check. Very few completeness or termination results exist for
such provers and our language does not fall in the scope of the known complete



classes. In general, inductive theorem proving requires strong human guidance,
especially for specifying the needed inductive lemmata. In contrast, our proce-
dure, although more focused in this scope, is purely automatic: the loop detection
rule allows one to generate automatically inductive invariants. Both the implicit
and the inductionless induction approaches handle universal properties: the con-
sidered goals are of the form φ |=ind ∀xψ, where |=ind denotes the inductive
logical consequence relation, φ is the axiomatization and ψ is a quanti�er-free
formula (usually a clause). Our work departs from these approaches because
the goals we consider are rather of the form φ |= ∀nQ1x1 . . . Qnxnψ (where n
denotes the parameter, x1, . . . , xn are standard variables and Q1, . . . , Qn are
quanti�ers). Indeed the value of the standard �rst-order variables can possibly
depend on the value of the parameter. Our calculus is also related to the proof
procedure described in [1] which handles schemata of propositional formulæ in-
dexed by integers. The scope of the present paper is however much larger, both
for the base language (�rst-order logic instead of propositional logic) and for
the type of the indices (terms � or words � instead of integers). Our calculus
is also strictly more powerful than the one presented in [3], which only handles
�rst-order clauses without equality. Besides, the completeness results in [3] only
hold for purely propositional schemata.

2 Preliminaries

In this section, we de�ne the syntax and semantics of the considered logic. We
assume the reader is familiar with the usual notions in logic and automated
deduction [22]. We consider �rst-order terms, built as usual on a sorted signature
Σ and on a set of variables X, in which some of the (function or constant)
symbols are indexed by terms of some special sorts. The sorts are used mainly
to distinguish the indices from the ordinary terms. The set of sort symbols is
thus partitioned into two disjoint sets SI and ST , where SI denotes the sorts of
the indices and ST the sorts of the ordinary terms. We assume that the pro�le
of every non-constant symbol f is either of the form s1 × . . . × sn → s, where
s2, . . . , sn, s ∈ ST , and s1 ∈ SI ∪ST or of the form s→ s′, where s, s′ ∈ SI , i.e.
all function symbols of a sort in ST have at most one argument of a type in SI
and all (non-constant) function symbols of a sort in SI are monadic and have a
domain in SI . A predicate symbol is a function symbol of pro�le s → bool. A
variable of a sort in SI is an index variable.

For readability, a term of head symbol f : s1, . . . , sn → s such that s1 ∈ SI
and s2, . . . , sn ∈ ST and of arguments i, t1, . . . , tn will be written fi(t1, . . . , tn) (i
is called an index term). The other terms are written as usual. This convention
allows one to clearly distinguish the induction terms from the standard ones. If
t is a term and p is a position (i.e. a �nite sequence of natural numbers) then
t|p denotes the subterm of t at position p (de�ned as usual). If v is a term then
t[v]p denotes the term obtained from t by replacing the subterm at position p
by v.

An atom is of the form t1 ' t2, where t1, t2 are terms of the same sort in
ST (equations between index terms are forbidden). A literal is either an atom
(positive literal) or the negation of an atom (negative literal). A clause is a �nite



multiset of literals (written as a disjunction) and 2 denotes the empty clause. Let
α be a special constant symbol (not occurring in Σ) of a sort in SI . Throughout
this paper, C denotes some particular class of clauses.

Let t and s be two index terms. We write t . s if t is of the form
f1(. . . (fn(s)) . . .) for some sequence of function symbols f1, . . . , fn and if s is
a variable or a constant.

De�nition 1. Let α be a constant symbol of a sort in SI . An α-clause is an
expression of the form (α 6≈ i1)∨ . . .∨ (α 6≈ in)∨C (with possibly n = 0) where:

� C is a clause.
� i1 . . . in are terms of the same sort as α.
� Either C is empty, or all the variables in i1, . . . , in occur in C.

If, moreover, the clause C belongs to the class of clauses C, then (α 6≈ i1)∨ . . .∨
(α 6≈ in) ∨ C is an (α,C)-clause. We call the α-clause normalized if n ∈ {0, 1}.

The constant α is called the parameter. The class C is mainly useful to restrict
the syntactic form of the considered expressions. It is assumed to be �xed once
and for all in the rest of the paper. Notice that, to avoid confusion, we use the
symbol ≈ instead of ' to denote equations between indices (i.e. in which α is
involved). Notice also that the symbol α cannot occur in a term or literal (since
α 6∈ Σ). Therefore, a property such as aα ' b for instance is to be written as
α 6≈ x ∨ ax ' b, where x is a variable. This idea of abstracting away terms and
replacing them by variables is commonly used in the superposition framework
to delay reasoning on some particular terms (see for instance [7]).

For every expression (term, atom, literal or clause) e, var(e) denotes the set
of variables occurring in e. If var(e) = ∅ then e is ground. A substitution σ is a
function mapping every variable x to a term xσ of the same sort as x. The domain
dom(σ) of σ is the set of variables x such that xσ 6= x. For every expression e,
eσ denotes the expression obtained from e by replacing every variable x by xσ.
A substitution σ is ground i� for every x ∈ dom(σ), xσ is ground. A renaming is
an injective substitution σ such that xσ ∈ X for every x ∈ dom(σ). The notions
of uni�ers and most general uni�ers (mgu) are de�ned as usual. If t and s are
two terms, we write t � s if s = tσ, for some substitution σ. We write t � s if
t � s and s 6� t. A set of terms T of the same sort s is covering for a term t of
sort s i� for every ground substitution θ, there exists s ∈ T such that tθ � s. It
is covering if it is covering for all terms of sort s. The problem of testing whether
a given set of terms is covering or not for a term t is decidable [13].

De�nition 2. An interpretation I is a pair (=I , I(α)) where =I is a congru-
ence on the ground terms whose sort is in ST and I(α) is a ground term of the
same sort as α. An interpretation I validates:

� A ground literal t1 ' t2 (resp. t1 6' t2) i� t1 =I t2 (resp. t1 6=I t2).
� A ground clause C ∈ C i� it validates at least one literal in C.
� A ground (α,C)-clause α 6≈ i1 · · · ∨ α 6≈ in ∨ C i� either I(α) 6= ij for some
j ∈ [1, n] or I validates C.



� A non-ground (α,C)-clause C i� for every ground substitution σ of domain
var(C), I validates Cσ.

� A set of (α,C)-clauses S i� it validates every (α,C)-clause in S.

We write I |= S if I validates S (I is a model of S) and S |= S′ if every model
of S is a model of S′.

The logic is obviously not decidable since it is clear that it encompasses
�rst-order logic: if the clauses contain no occurrences of the special constant
symbol α, then the value of the parameter is irrelevant, and an interpretation
is simply a congruence on the set of Herbrand terms. In this case our semantics
coincides with the usual one. The following theorem states that it is not even
semi-decidable.

Theorem 1. The unsatis�ability problem is not semi-decidable for (α,C)-
clauses, if C is the whole class of �rst-order clauses with one index variable.

Proof. The proof is by reduction to the Post correspondence problem. Let
u1, . . . , un and v1, . . . , vn be two sequences of words. We construct a set of (α,C)-
clauses S such that S is satis�able i� there exists a sequence of indices i1, . . . , im
such that ui1 . . . . .uim = vi1 . . . . .vim . We use a constant symbol l encoding the se-
quence i1, . . . , im, with two function symbols head and tail returning respectively
the head and the tail of a list. Words are encoded as usual, as lists of charac-
ters. ε denotes the empty word and concat is a function concatenating two words
(its de�nition is straightforward and is omitted). If x ∈ {u, v} and y denotes
a sequence of indices i1, . . . , im, then sol(y, x) denotes the word xi1 . . . . .xim .
word(u, i) and word(v, i) denote the words ui and vi respectively We use the
following axioms:

� ¬empty(x)∨head(x) ' 1∨ . . .∨head(x) ' n (if a sequence is not empty then
its head is in [1, n])

� word(u, i) ' ui, for every i ∈ [1, n] (de�nition of u).
� word(v, i) ' vi, for every i ∈ [1, n] (de�nition of v).
� ¬empty(y)∨sol(y, x) ' ε. If the sequence i1, . . . , im is empty then the solution
xi1 . . . . .xim is also empty.

� empty(y) ∨ sol(y, x) ' concat(word(x, head(y)), sol(tail(y), x)). Otherwise, it
corresponds to the concatenation of the word xi1 and the solution corre-
sponding to the sequence i2, . . . , im.

� word(u, l) ' word(v, l). The two sequences are equal.

We now de�ne a predicate lengthi(l) to encode the fact that l has length i.

� length0(x) ∨ ¬empty(x)
� (¬lengthi+1(x) ∨ ¬empty(x)) ∧ (¬length0(x) ∨ empty(x))
� (lengthi+1(x) ∨ ¬lengthi(tail(x))) ∧ (¬lengthi+1(x) ∨ lengthi(tail(x)))

Finally, the following clauses state that the constant l denotes a �nite list of
length α 6= 0 (notice that this property is the only one that cannot be expressed
in �rst-order logic: otherwise l could denote an in�nite or cyclic list): α 6≈ x ∨
lengthx(l) ∧ ¬empty(l)



It is straightforward to check that the previous set of clauses is satis�able i�
there exists a sequence of indices i1, . . . , im satisfying the desired property.

Proposition 1. Let D : α 6≈ i1∨. . .∨α 6≈ in∨C be an (α,C)-clause, with n ≥ 1.
If i1, . . . , in are not uni�able then D is a tautology. Otherwise, D is equivalent
to α 6≈ i1σ ∨ C where σ is an mgu of i1, . . . , in. In this case, α 6≈ i1σ ∨ C is the
normalized form of D.

From now on, we assume that every (α,C)-clause is normalized. Indeed, by
Proposition 1, a clause α 6≈ i1 ∨ . . . α 6≈ in ∨ C can be either deleted or re-
placed by its normalized form.

3 A Superposition Calculus for Indexed Clauses

Our proof procedure is a conservative extension of the superposition calculus [6,
20]. All the rules are applied without any modi�cation, except that disequations
containing α are simply ignored (no inference can be applied from or into such
disequations).

Let < denote a simpli�cation ordering that is total on ground terms [20].
The ordering < is extended to atoms, literals and clauses using the multiset
extension and to (α,C)-clauses simply by ignoring disequations containing α. A
literal L is maximal in a clause C ∈ C if for every L′ ∈ C, L 6< L′. We consider
a selection function sel which maps every clause C to a set of selected literals in
C. For completeness, we assume that for every clause C, sel(C) contains either
a negative literal or all maximal literals. This selection function is extended
to (α,C)-clauses as follows: for every (α,C)-clause α 6≈ i1 ∨ . . . ∨ α 6≈ in ∨ C,
sel(α 6≈ i1 ∨ . . . ∨ α 6≈ in ∨ C)

def

= sel(C).

We consider the calculus (parameterized by < and sel) of Figure 1. If S is a
set of (α,C)-clauses, we write S ` C if C is an (α,C)-clause and if there exists
a non-tautological (α,C)-clause C ′ that can be deduced from S by applying one
of the rules of Figure 1 such that C is the normalized form of C ′.

We adapt the usual redundancy criteria. A tautology is an (α,C)-clause con-
taining two complementary literals, or a literal of the form t ' t. An (α,C)-clause
C is subsumed by an (α,C)-clause D if there exists a substitution σ such that
Dσ ⊆ C. A ground (α,C)-clause C is redundant in S if there exists a set of
(α,C)-clauses S′ such that S′ |= C, and for every D ∈ S′, D is an instance of an
(α,C)-clause in S such that D ≤ C. A non ground (α,C)-clause C is redundant if
all its instances are redundant. In particular, every subsumed (α,C)-clause and
every tautological clause is redundant. A set of (α,C)-clauses S is saturated if
every (α,C)-clause C such that S ` C is redundant in S.

4 Loop Detection
The superposition calculus is not powerful enough to derive a contradiction
from unsatis�able sets of (α,C)-clauses, even in trivial cases, because it does
not take into account the inductive structure of the domain of α. This is well
illustrated by the following example.



Superposition calculus:

Superposition C ∨ t ' s,D ∨ u ' v → (C ∨D ∨ t[v]p ' s)σ
if σ = mgu(u, t|p), uσ 6< vσ, tσ 6< sσ, t|p is not a variable,
(t ' s)σ ∈ sel([C ∨ t ' s]σ), (u ' v)σ ∈ sel([D ∨ u ' v]σ).

Paramodulation C ∨ t 6' s,D ∨ u ' v → (C ∨D ∨ t[v]p 6' s)σ
if σ = mgu(u, t|p), uσ 6< vσ, tσ 6< sσ, t|p is not a variable,
(t 6' s)σ ∈ sel([C ∨ t 6' s]σ), (u ' v)σ ∈ sel([D ∨ u ' v]σ).

Re�ection C ∨ t 6' s → Cσ
if σ = mgu(t, s), (t 6' s)σ ∈ sel([C ∨ t 6' s]σ).

Eq. Factorisation C ∨ t ' s ∨ u ' v → (C ∨ s 6' v ∨ t ' s)σ
if σ = mgu(t, u), tσ 6< sσ, uσ 6< vσ, (t ' s)σ ∈ sel([C ∨ t ' s ∨ u ' v]σ).

Fig. 1: The superposition calculus

Example 1. The �rst example in the Introduction can be encoded as the following set
of (α,C)-clauses (where pi(t) denotes as usual the equation pi(t) ' true).

1. p0(a) 2. ¬px(y) ∨ ps(x)(f(y)) 3. α 6≈ x ∨ ¬px(y)

It is easy to check that the following clauses can be generated by superposition:

4. α 6≈ 0 (3,1) 7. α 6≈ s(s(x)) ∨ ¬px(y) (5,2)
5. α 6≈ s(x) ∨ ¬px(y) (3,2) 8. α 6≈ s(s(0)) (7,1)
6. α 6≈ s(0) (5,1) . . .

It is clear that an in�nite set of clauses of the form α 6≈ sn(0) (for n ∈ N) can
be generated. Since α must be interpreted by a term of the form sn(0), the set is
unsatis�able (the set {sn(0) | n ∈ N} is covering). However, no contradiction can be
derived in �nite time, which shows that the calculus is not complete (note that the
logic is not compact).

In this section, we show how to overcome this problem in some cases (by
Theorem 1 no general solution is possible). Notice that, in some cases, the cal-
culus can generate a �nite set of disequations {α 6≈ t1, . . . , α 6≈ tn} such that
{t1, . . . , tn} is covering, in which case one may conclude that the clause set is
unsatis�able (of course it may also directly generate 2, if α is not involved in the
proof). In order to handle the cases in which no such �nite set of disequations
can be generated, we de�ne a loop detection rule, that encodes a form of mathe-
matical induction (by �descente in�nie�) and that is able to derive clauses of the
form α 6≈ t which cannot be derived by the superposition calculus. Intuitively,
this rule applies when a cycle is detected in the search space, i.e. when S entails
a set of (α,C)-clauses S′ which is identical to S up to a shift of the value of the
parameter α. The following de�nition formalizes this notion:

De�nition 3. A shift for a variable x is a substitution of the form {x 7→ s},
where s 6= x and var(s) = {x}. Let θ be a shift, C be a normalized (α,C)-clause



and let t be a term with var(t) = {x}. The (α,C)-clause shift(C, t, θ) is de�ned
as follows:

� If C is of the form α 6≈ tσ ∨D, for some substitution σ and for some clause

D ∈ C, then shift(C, t, θ)
def

=α 6≈ tθσ ∨D.

� Otherwise shift(C, t, θ)
def

=C.

If S is a set of (α,C)-clauses then shift(S, t, θ)
def

=
⋃
C∈S{shift(C, t, θ)}.

Example 2. Let C : α 6≈ f(g(x))∨hg(x)(y) ' y and D : α 6≈ f(x)∨hx(y) ' a. We have
shift(C, f(x), {x 7→ f ′(x)}) = α 6≈ f(f ′(g(x))) ∨ hg(x)(y) ' y, shift(C, f(g(x)), {x 7→
f ′(x)}) = α 6≈ f(g(f ′(x)))∨hg(x)(y) ' y , shift(D, f(x), {x 7→ f ′(x)}) = α 6≈ f(f ′(x))∨
hx(y) ' a and shift(D, f(g(x)), {x 7→ f ′(x)}) = D.

The loop detection rule is based on the following theorem. Intuitively, it
applies when, for all possible instances s of some term t, the branch in the
search space that corresponds to the case α = s is either closed (i.e. the clause
set contains a clause of the form α 6≈ s′, where s′ � s) or can be reduced (by
shifting) to the branch corresponding to a strictly smaller term. Then the whole
branch α = t can be closed, by �descente in�nie�.

A set of (α,C)-clauses S is a t-set if for every (α,C)-clause α 6≈ s∨C occurring
in S, we have s � t.

Theorem 2. Let S be a set of (α,C)-clauses. Assume there exists a set of terms
{t1, . . . , tn} covering for t such that:

1. For all i ∈ [1, n], there exists a ti-set Si ⊆ S.
2. For all i ∈ [1, n] and for all ground terms s � ti, one of the following

conditions holds:

(a) Si |= α 6≈ s.
(b) There exist a number j ∈ [1, n] and a shift θs such that Si |=

shift(Sj , tj , θs) and s � tjθs.

Then we have S |= {α 6≈ t}.

Theorem 2 allows one to derive an (α,C)-clause of the form α 6≈ t from a
set satisfying the previous properties. In practice, guessing the sets Si and the
shifts θs and checking whether (i) Si |= α 6≈ s or (ii) Si |= shift(Sj , tj , θs) is
of course infeasible. We need to impose stronger syntactic conditions. A simple
solution (used in the sequel) is to check that: (i) a clause of the form α 6≈ s′ with
s′ � s has been derived from parent clauses in Si, (ii) shift(Sj , ti, θs) has been
derived from Si. Of course, to apply the theorem in practice, one has to exhibit
a �nite set of substitutions θs that covers all possible terms, so that Condition
2 holds. The completeness proof of the next section provides additional hints on
how the theorem should be applied in practice (in particular, to choose the sets
Si). From now on, we write S ` C if an (α,C)-clause C can be deduced from a
set of clause sets S by superposition or by the loop detection rule.



Example 3. Consider the set of (α,C)-clauses of Example 1. Let t1 = x, S1 = {1, 2, 3}
and S′ = {1, 2, 5}. We check that the conditions of Theorem 2 are ful�lled. The set {t1}
is obviously covering, and it is clear from the derivation in Example 1 that we have
S1 `∗ α 6≈ 0 and S1 `∗ S′. Furthermore, it is easy to check that S′ = shift(S1, x, {x 7→
s(x)}). Let s be a ground term. The term s is either 0, in which case Condition 2.a
is satis�ed, or of the form s(t′) for some term t′, in which case Condition 2.b holds
(with j = 1 and θs = {x 7→ s(x)}). Thus Theorem 2 applies and the clause α 6≈ x is
generated. This clause is obviously unsatis�able, which proves that the original clause
set is also unsatis�able.

If the indices are natural numbers, the conditions are much simpler to test,
since all covering sets contain a subset of the form {0, s(0), . . . , sk(0), sk+1(x)}.
Thus we may assume that k = 1 and that there exists at most one shift θs.

The loop detection rule is related to the inductive rule presented in [16].
Both rules apply globally, on the whole clause set (and not on a �xed �nite set
of premises, as the usual inference rules). They both encode a form of mathe-
matical induction in the context of a superposition-based calculus, with the aim
of deriving a contradiction in some cases where the other rules diverge. However,
there exist important di�erences between these two rules. The inductive rule of
[16] encodes the fact that, when proving a formula φ(α), where α ranges over
some inductively de�ned domain, one may assume that α is minimal, i.e. that
¬φ(β) holds for every β strictly lower than α (according to some well-founded
ordering). The purpose of the inductive rule is precisely to derive the formula
¬φ(β), with additional constraints ensuring that β < α. Obviously, this rule
only preserves satis�ability. In contrast, our rule uses induction in the form of
descente in�nie: it only applies when a formula φ(β) has been explicitly derived
from φ(α) by the inference rules. The only properties that can be derived are
clauses of the form α 6≈ t, which in some sense close the branches corresponding
to instances of t in the search space. The conclusion is a logical consequence of
the premises, and the inference strongly depends on the considered signature.

Example 4. For instance, consider the clause set {α 6≈ x∨ px,¬pa,¬pf(x) ∨ qx,¬qf(x) ∨
qx,¬qa}. The superposition calculus derives the clauses: α 6≈ a, α 6≈ fn(f(x)) ∨ qx
and α 6≈ fn(f(a)), for every n ∈ N. The inductive rule of [16] applies on the initial
clause set and derives (for instance) the clause: α 6≈ f(x) ∨ ¬px. This is intuitively
justi�ed by the fact that if we assume that α is the minimal term such that α 6≈ x∨ px
(i.e. pα), holds then necessarily px cannot hold if x is a proper subterm of α. Notice
that this clause does not help to derive a contradiction in this case. Our rule cannot
derive such a property. However, since the clauses α 6≈ f(f(x)) ∨ ¬px and α 6≈ f(a)
can be derived from α 6≈ f(x) ∨ px (using the clauses not containing α), and since
α 6≈ f(f(x)) ∨ ¬px = shift(α 6≈ f(x) ∨ px, f(x), {x 7→ f(x)}), the loop detection rule
applies and derives α 6≈ f(x). Notice that this is only possible because the signature
only contains f and a (otherwise the set {f(x), a} would not be covering). Together
with the clause α 6≈ a, this proves the unsatis�ability of the initial clause set.

The loop detection rule also departs from the technique presented in [15]
for deciding the validity of ∀∃-queries. The latter approach is based, roughly
speaking, on a �compilation� of the search space into an automaton, and to a re-



duction of the satis�ability problem to the emptiness problem for the represented
language.

We show a more complex example of application of our approach.

Example 5. Let T be an array. Let a, b1, . . . , bn be indices of T , such that ∀i a 6= bi.
We consider the array T ′ obtained from T by changing successively the value of the
cell bi to some constant ci. We want to prove that T [a] = T ′[a]. This is formalized in
our setting by the following set of clauses. We de�ne a sequence of arrays Ti with the
following clauses:

(1) T0 ' T (2) Ti+1 ' store(Ti, bi, ci)

We have the axiom:
(3) bi 6' a

We also consider the usual axioms of the theory of arrays (see for instance [4]):

(4) select(store(t, x, v), x) ' v (5) x ' y ∨ select(store(t, x, v), y) ' select(t, y)

The inequation Tn[a] 6= T [a] is de�ned as follows:

(6) select(T, a) ' d (7) α 6≈ i ∨ select(Ti, a) 6' d

We then derive the following (α,C)-clauses by applying the superposition calculus:

(8) α 6≈ 0 ∨ select(T, a) 6' d (1,7)
(9) α 6≈ 0 (6,8)
(10) y ≈ bi ∨ select(Ti+1, y) ' select(Ti, y) (2,5)
(11) α 6≈ i+ 1 ∨ a ' bi ∨ select(Ti, a) 6' d (10,7)
(12) α 6≈ i+ 1 ∨ a ' bi ∨ select(T, a) 6' d (1,11)
(13) α 6≈ 1 ∨ a ' b0 (6,12)
(14) α 6≈ 1 (13,3)
(15) α 6≈ i+ 2 ∨ a ' bi ∨ select(Ti, a) 6' d (10,11)

We check that the conditions of Theorem 2 hold. Consider the sets S1 = {1, 6, 10, 11}
and S′ = {1, 6, 10, 15}. S1 is an i + 1-set and S′ is an i + 2-set. We have S1 `∗ S′.
Furthermore, S1 = shift(S′, i+1, {i 7→ i+1}). The only ground term that is an instance
of i+ 1 but not of i+ 2 is 1, and we have S1 `∗ α 6≈ 1. Hence the looping rule applies,
yielding (16) α 6≈ i + 1. Since {0, i + 1} is covering, Clauses 9 and 16 entail that the
original clause set is unsatis�able. Notice that the loop detection rule can be applied in
several di�erent ways. In this case, if we consider the sets S1 = {1, 6, 10, 11}, S2 = {9}
and S′ = {1, 6, 10, 15}, then one can directly generate α 6≈ i (since S2 is a 0-set,
S2 `∗ α 6' 0 and {0, 1, i+ 2} is covering).

5 Completeness

Since the considered logic is not semi-decidable (by Theorem 1), the proof pro-
cedure cannot be complete in general. That is why we impose some additional
conditions on the considered clause sets. At this point, we only introduce ab-
stract, semantic conditions which are meant to be as general as possible and



su�cient to ensure completeness. In Section 7 we will provide an example of a
concrete (syntactic) class of clause sets ful�lling these requirements.

For technical convenience, we assume that the considered terms contain no
constant symbols of a sort in SI . This condition greatly simpli�es the de�nitions
and proofs. It is not really restrictive, since any constant symbol a may be
replaced by a term a(x), where x is a dummy variable1. Furthermore, we assume
that for every (α,C)-clause α 6≈ t ∨ C occurring in the considered clause sets, t
is not a variable. Again this condition is not restrictive: it can be enforced by
introducing a new function symbol f of pro�le s → s′, where s is the initial
sort of α and s′ is a new sort symbol, and by replacing every disequation α 6≈ t
(where t is possibly a variable) by α 6≈ f(t) (note that by de�nition f is the
unique function symbol of sort s′, thus for all interpretations I, I(α) will be
of the form f(. . .)). A clause C is index-�at if every index occurring in C is a
variable.

De�nition 4. We denote by succ the partial function such that succ(t)
def

=
f1(. . . (fn−1(x))) if t is of the form f1(. . . (fn(x)) . . .)) for some variable x (succ
is unde�ned otherwise).

We now introduce a function �rank� that plays a central role in the following.
It maps all (α,C)-clauses C to the (necessarily unique) term t such that α 6≈ t
occurs in C (or ⊥ if α does not occur in C). However, if C is not index-�at,
then we will return not the term t itself, but rather its successor according to
succ. The reason behind this seemingly non-intuitive de�nition is that we want
the rank to be preserved by instantiation (for the clauses whose indices have
depth 0 or 1), for instance α 6≈ f(g(x)) ∨ pg(x) should have the same rank as
α 6≈ f(x) ∨ px. More formally:

De�nition 5. The rank of an (α,C)-clause C is de�ned as follows.

� If C ∈ C then rank(C)
def

= ⊥.
� If C is of the form α 6≈ i ∨D and D is index-�at then rank(C)

def

= i.

� If C is of the form α 6≈ i∨D and D is not index-�at then rank(C)
def

= succ(i).

The function rank is well-de�ned, since i cannot be a variable. If S is a set of
(α,C)-clauses, we denote by S〈r〉 the set of (α,C)-clauses of rank r (up to a
renaming) in S. We then consider a particular subset of C, obtained by consid-
ering only the index-�at (α,C)-clauses that can interact with a non-index-�at
(α,C)-clause:

De�nition 6. We denote by F the set of index-�at clauses C ∈ C such that
there exist two clauses D,E ∈ C such that C,D ` E and D is not index-�at.

If S is a set of (α,C)-clauses, we denote by F(S) the set {α 6≈ t∨C ∈ S | C ∈ F}.
1 Of course the signature Σ must contain a constant symbol of the same sort as x,
otherwise the set of ground terms would be empty. However, this constant is not
allowed to occur in the clauses.



De�nition 7. The class C is admissible i� it satis�es the following conditions:

(c1) C is closed under superposition i.e. if S ` C and S ⊆ C then C ∈ C.
(c2) Each non-empty clause in C contains exactly one index variable. Further-

more, if C and D contain two index variables x and y respectively, and if
an inference is applicable on C,D with a uni�er σ, then σ(x) is x, y or of
the form f(y), for some function symbol f . Moreover if σ(x) = f(y) then C
is index-�at and D is not. Similarly, if C contains an index variable x, and
if a unary inference is applicable on C with a uni�er σ, then we must have
σ(x) = x.

(c3) F is �nite (up to a renaming of variables).

From now on we assume that the considered class C is admissible. Condition
(c1) is rather natural: it guarantees that the (α,C)-clauses constructed over C
are closed under superposition inferences. Condition (c2) will ensure that these
inferences cannot increase the depth of the indices arbitrarily. Condition (c3)
ensures that only �nitely many clauses of a given rank can be built on F. As
we will show, (c2) entails that the search space has a strict hierarchic structure
w.r.t. the rank: for all terms t � s, the (α,C)-clauses of rank s are necessarily
derived from those of rank t (along with the clauses of rank ⊥). Furthermore,
we will prove that this relation still holds if the clauses are restricted to those
occurring in F, i.e. we have t � s⇒ S〈⊥〉∪F(S〈t〉) `∗ S〈⊥〉∪F(S〈s〉) (assuming
t is lower than the ranks of the initial (α,C)-clauses). Then, (c3) ensures that
there exist only �nitely many sets F(S〈t〉) (up to a shift), which entails that the
loop detection rule eventually applies. A clause set S is saturated if every clause
C such that S ` C is redundant w.r.t. S (in the usual sense). The following
theorem states our completeness result:

Theorem 3. Let S be a set of (α,C)-clauses where C is admissible. If S is
saturated and unsatis�able then either 2 or α 6≈ x occurs in S.

6 Satis�ability Detection

In standard clausal logic, the satis�ability of a given clause set S can sometimes
be established by saturation, in case the set of clauses derived from S is �nite and
does not contain 2. This is not feasible in the context of this paper (except in
trivial cases), because the rank will in general increase inde�nitely. However, we
can devise the following satis�ability test, based on a form of partial saturation:

De�nition 8. A set of (α,C)-clauses S is saturated w.r.t. a (ground) term t if
for every clause C such that S ` C, either C is redundant or C is of the form
α 6≈ s ∨D, where s and t are not uni�able.

If a set of (α,C)-clauses S is saturated w.r.t. some term t and does not contain
α 6≈ t, then it can be shown that S has a model in which the value of α is t (note
that testing whether a clause set is saturated w.r.t. t is easy: if the standard
proof search algorithm is used, it su�ces to test that the set of �active� clauses
contains no clause of a rank more general than t).



If C is �nite (i.e. if the superposition calculus terminates on clause sets in
C), then the number of (α,C)-clauses of a �xed rank is also �nite. This entails
that, for every ground term t, it is possible to eventually obtain, from any initial
clause set S, a clause set containing S and saturated w.r.t. t. If, moreover, there
exists a term t such that this partially saturated set does not contain α 6≈ t,
then satis�ability can be detected. If no such term exists, the initial clause set
must be unsatis�able, thus termination can be ensured in both cases, although
the set of (α,C)-clauses is in�nite.

Theorem 4. If C is �nite, then the satis�ability problem is decidable for sets of
(α,C)-clauses.

Note that the fact that C is �nite does not imply that the set of terms that can be
constructed on the signature is �nite, since the restrictions on the superposition
inferences can prevent such terms from being generated.

7 Complete Classes of Indexed Formulæ

In this section, we demonstrate the applicability of our results by providing an
example of an admissible syntactic class of (α,C)-clauses.
Let µ be a complexity function mapping every ground term to a natural number.
We assume that for any k ∈ N, the set of ground objects t such that µ(t) ≤ k
and such that every index in t is of depth at most 1 is �nite. Examples of usual
complexity functions satisfying this requirement include the depth (maximal
length of the non-index positions occurring in the terms) or the size (number of
non-index positions in the terms). The function µ is extended to atom, literals
and clauses as follows:

� µ(t 6' s) def

= µ(t ' s) def

= max(µ(t), µ(s)), and

� µ(
∨n
i=1 li)

def

= max{µ(li) | i ∈ [1, n]}.

We write t =µ s if for every substitution σ we have µ(tσ) = µ(sσ). For every
natural number ν, we write t ≤νµ s if for every substitution σ such that µ(tσ) > ν,
we have µ(tσ) ≤ µ(sσ). The relations =µ and ≤νµ are hard to test in general
because the set of substitutions σ is in�nite. However, algorithms for testing
whether t =µ s or t ≥νµ s for various complexity functions µ are de�ned in [19,
21]. For instance, if µ is the depth of the term, then it is easy to see that t =µ s i�
the following conditions hold: µ(t) = µ(s), t and s have the same set of variables
and the maximal occurrence depth of every variable is the same in t and in s.

We consider two (not necessarily disjoint) sets of predicate symbols: a set
of control predicates Ωc and a set of index propagation predicates Ωi. A literal
is a control literal (resp. an index propagation literal) if its atom is of the form
pi(t1, . . . , tn) ' true, where p ∈ Ωc (resp. p ∈ Ωi) and i is an index term. The
remaining literals are called the standard literals. Let Sp be a set of sort symbols,
called the µ-preserving sorts satisfying the following properties:

� For every predicate symbol p ∈ Ωc ∪Ωi of pro�le s1 × . . .× sn → bool, and
for every i ∈ [1, n], we have si ∈ Sp.



� For every function symbol of pro�le s1 × . . . × sn → s, if s ∈ Sp then
∀i ∈ [1, n], si ∈ Sp.

Intuitively, the sorts in Sp are the sorts of the terms occurring in control or index
propagation literals.

De�nition 9. A set of clauses S is µ-controlled i� the following conditions
holds:

1. For every equation t ' s occurring in a clause in S, if t and s are of a sort
in Sp, then t =µ s.

2. There exists a natural number ν such that, for every clause C, and for every
index propagation literal or positive control literal L in C, we have L ≤νµ C ′,
where C ′ is the set of negative control literals occurring in C.

3. All literals, except index propagation literals, are index-�at.
4. Every clause in S contains at most one index variable.
5. The atoms in S are either of the form fi(t) ' gi(s) (equational atoms) or

of the form pi(t) ' true (non-equational atoms).

In particular, any non-equational index-�at clause set is µ-controlled (with Sp =
Ωc = Ωi = ∅). Condition 1 ensures that the superposition inferences will not
a�ect the complexity of the terms occurring inside control or index propagation
literals. Condition 2 states that the complexity of every positive control literal
and of every index propagation literals is dominated by the complexity of the
negative control literals occurring in the clause. Condition 3 ensures that the only
dependencies between terms of distinct indices are encoded by index-propagation
literals (the remaining literals state relations involving only terms with the same
indices). Condition 5 forbids equations between indexed and non-index non-
boolean terms, such as ai ' b. Equations between variables are also forbidden.

Example 6. Let µ be the depth function. Let Ωc = {p}, Ωi = {q}. The clauses
pi(f(c)),¬pi(x) ∨ ps(i)(x) ∨ ¬qi(x), pa(b), α 6' i ∨ pi(f(b)), qi(x) ∨ ¬qi(f(x)), qi(f(c)),
pi(x) ∨ ¬ri(y) ∨ ri(f(y)), ri(a), are µ-controlled, with ν = 2. Note that the conditions
on the control literals ensure that for all literals of the form pi(t) or qi(t) generated
by the inferences, t is of depth at most 2. In contrast, the literals of head ri can be
of arbitrary depth. The clauses f(x) ' g(f(x)), ¬qi(x) ∨ qi(f(x)), pi(f(x)) ∨ ¬qi(x),
pi(x), as(i) ' bi, pi ∨ pj , f(x) ' gi(x) are not µ-controlled, because they contradict
Conditions 1, 2, 2, 2, 3, 4 and 5, respectively. In particular, f(x) ' g(f(x)) contradicts
Condition 1 because f(x) and g(f(x)) have distinct depths. Similarly, ¬qi(x)∨qi(f(x))
violates Condition 2 (regardless of the value of ν), because the depth of qi(x) is not
asymptotically greater than that of qi(f(x)).

The superposition strategy is de�ned as follows.

� Negative control literals are selected in any clause containing only control
literal and index propagation literals. Otherwise, the selected literals are the
maximal ones.

� The ordering satis�es the following properties:



• The relation pf(i)(t1, . . . , tn) > qi(s1, . . . , sm) holds for all symbols
p, q, t1, . . . , tn, s1, . . . , sm and f .

• All standard atoms of index i are strictly greater than all index propa-
gation atoms with the same index i.

The second condition on the ordering may seem rather strong, since, clearly, the
considered index propagation atom can contain variables not occurring in the
standard atom. However, it can easily be enforced by assuming that the terms
occurring at a root level in the standard atoms are of some special sorts that
cannot occur inside an index propagation atom (those terms can then be assumed
to be strictly greater than the ones occurring in index propagation atoms).

Theorem 5. The class of µ-controlled clauses is admissible.

Proof. We prove simultaneously that Conditions c1, c2 and c3 holds. In partic-
ular, c3 is established by showing that every clause in F contains no variable
except index variables and is of complexity lower than ν (this clearly entails
that F is �nite up to a renaming). We consider two µ-controlled clauses C[t]p
and u ' v ∨ D and a clause C[v]pσ ∨ Dσ, obtained by superposition from the
two �rst clauses (the proof for the other inference rules is similar).

� Assume that C[t]p is index-�at and that u ' v ∨ D is not. Due to the
ordering used to restrict the inferences, u cannot be index-�at (otherwise u
would not be maximal). Therefore, u is of the form pf(i)(t), where p ∈ Ωi.
Consequently, t is of the form pj(s) (since t and u are uni�able, they must
have the same head symbol). But then since t is selected, C[t]p cannot contain
any standard atom (otherwise t would not be maximal) neither any negative
control literal (otherwise this literal would be selected). Thus the set of
negative control literals in C is empty, and by Condition 2 in De�nition 9,
we have µ(C[t]p) ≤νµ 2. This implies that C[t]p contains no variables (except
index variables) and is of complexity at most ν. The same reasoning holds
if u ' v∨D is index-�at and C[t]p is not (in this case u ' v∨D contains no
non-index variable and we must have µ(u ' v ∨D) ≤ ν). Thus the clauses
in F contain no variable (except index variables) and are of complexity at
most ν.

� Since the depth of the index terms is at most 1 and since, due to the ordering
restrictions, only the literals with deepest indices are eligible for inferences,
the condition c2 is easy to check. Notice that this implies that the number
of index variables does not increase.

� It only remains to prove that c1 holds, i.e. that C[v]pσ ∨Dσ is µ-controlled.
We prove that this clause satis�es all the conditions of De�nition 9.

• Let t ' s be an equation in C[v]pσ∨Dσ, where t, s are of a sort in Sp. If
t ' s is of the form (t′ ' s′)σ where t′ ' s′ occurs in one of the parent
clauses, then since the parent clauses are µ-controlled by hypothesis, we
have necessarily t′ =µ s

′ and thus also t =µ s. Otherwise, t ' s is of the
form (t′[v]q ' s′)σ, where t′ ' s′ occurs in one of the parent clauses and
t′|q = u. Again, we have t′ =µ s

′. Furthermore, by de�nition of Sp, u



and v must be of a sort in Sp. Consequently, we have also u =µ v and
thus t′ =µ t

′[v]q. Therefore, t
′[v]qσ =µ s

′σ.
• Let L be a literal occurring in C[v]pσ∨Dσ, that is either an index prop-
agation literal or a positive control literal. By de�nition, L is obtained
from a literal L′ occurring in one of the parent clauses by applying the
substitution σ and by (possibly) replacing an occurrence of the term uσ
by vσ. If u does not occur in L then obviously L = L′σ, thus L =µ L

′σ.
If u occurs in L then by de�nition of Sp, u must be of a sort in Sp, thus
we have u =µ v and therefore in both cases the relation L =µ L

′σ holds.
Since the parent clauses containing L′ is µ-controlled, it also contains a
disjunction of control literals M such that M ≥νµ L′. Thus C[v]pσ ∨Dσ
contains a disjunction of literals M ′ obtained from Mσ by replacing
uσ by vσ. If u ' v is a control literal, then D contains a disjunction
of negative control literals D′ such that D′ ≥νµ u ' v. Thus we have
D′σ ≥νµ Mσ ≥νµ L. Otherwise, if u occurs in M then it must be of a sort
in Sp. Therefore we have u =µ v, which implies that M ′ =µ Mσ, and
thus M ′ ≥νµ L.

• Assume that C[v]pσ ∨Dσ contains a literal L that is not an index prop-
agation literal and that is not index-�at. This literal is obtained from a
literal L′ occurring in one of the parent clauses by applying the substitu-
tion σ and by replacing the term uσ by vσ. L′ cannot be an index prop-
agation literal . Thus L′ is index-�at, which means that σ cannot be �at
and that (by Condition c2) the parent clause not containing the literal
L′ must be non-index-�at. But we have shown that the only index-�at
clauses that can interact with non-index-�at clauses only contain index
propagation literals, which contradicts our initial assumption on L.

• Condition 4 is an immediate consequence of c2.
• The last condition is straightforward to check, since it holds for the two
parents and it is obviously preserved by replacement and instantiation.

Intuitively, the index propagation literals encode properties of the index
terms and relations between them, whereas the other literals encode properties
of standard terms (for a given index). The use of control literals ensures that the
size of the former literals is bounded whereas the latter can be arbitrary �rst-
order literals. Several concrete classes can be obtained simply by instantiating
the complexity measure µ. All these classes are strictly more expressive than �rst-
order logic (which corresponds to the case in which both Ωc and Ωi are empty).
Theorem 3 ensures that our calculus is complete for µ-controlled clause sets. If,
moreover, the considered clauses belong to a class for which the superposition
calculus terminates (such as the monadic class, the guarded fragment,. . . or if
all the literals are index propagation or control literals) then Theorem 4 ensures
termination and decidability. We thus obtain � without any additional e�ort � a
general completeness result for schemata of �rst-order clauses and decidability
results for schemata built on decidable subclasses of �rst-order logic. In partic-
ular, it is easy to check (see [3]) that every regular propositional schema [1] can
be expressed as a set of µ-controlled clauses (in this case all literals are index



propagation literals and indices are natural numbers). Therefore, the formulæ
of propositional linear temporal logic can also be encoded as µ-controlled clause
sets (see [2] for a translation of LTL into regular schemata). Many properties of
usual inductively de�ned data-structures such as lists or trees can be encoded
into controlled clauses. For instance, a tree can be denoted as a constant symbol
τ indexed by positions2, where τp denotes the label of the node at position p.
Then we can easily encode the fact that some �rst-order property is satis�ed
by all labels in the tree (or by all labels occurring along some position, or some
regular set of positions). However, we cannot express the fact that, e.g., a tree is
sorted, because it requires to use atoms of the form τp.0 ≤ τp ≤ τp.1, which nec-
essarily involve terms with several distinct indices. Relations between distinct
trees can also be expressed, provided they preserve the shape of the tree (for
instance we can state that a tree is obtained from τ by applying some function
f on every node).

8 Conclusion

A proof procedure for handling clauses with indexed terms has been presented,
enriching the superposition calculus with a carefully controlled form of induc-
tive reasoning. Although the satis�ability problem is not even semi-decidable
in general, criteria have been devised to ensure refutational completeness and
termination. At the best of our knowledge, no other proof procedure provides
similar features. Future work includes the implementation of this procedure and
the evaluation of its practical performance. To this purpose, developing e�cient
algorithms to apply the loop detection rule is obviously essential (Sections 4
and 5 provide some hints in this direction). A �rst implementation has already
been completed in the particular case in which the indices are natural numbers
(de�ned on the signature {0, succ}) and will soon be available. From a more
theoretical point of view, other classes of clause sets satisfying the conditions of
Section 5 have to be identi�ed. In particular, it would be interesting to �nd a
terminating class containing the example provided in Section 4 concerning the
theory of arrays (as well as examples from other similar theories: lists, records,
integers etc.). Another line of future work is to extend the proof procedure in
order to allow equations between indices.
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A Proof of Proposition 1

Let I be an interpretation. By de�nition, I |= D, i� I |= Dθ for every ground
substitution θ. If θ is not a uni�er of i1, . . . , in, then necessarily, i1θ, . . . , inθ are
distinct, thus I(α) must be distinct from one of the ijθ (1 ≤ j ≤ n) and we have
I |= Dθ. This proves that D is a tautology if i1, . . . , in have no uni�er. Moreover,
if i1, . . . , in have a uni�er σ, then I |= D i� I |= Dθ for every substitution θ
that is an instance of σ, i.e. i� I |= Dσθ′, for every ground substitution θ′.
Furthermore, we have Dσ ≡ α 6≈ i1σ ∨ . . . α 6≈ inσ ∨ Cσ ≡ α 6≈ i1σ ∨ Cσ. Thus
D ≡ α 6≈ i1σ ∨ Cσ.

B Proof of Theorem 2

We �rst introduce some de�nitions and intermediate lemmata:
The function s 7→ θ−1t (s) formalizes in some sense the inverse of the shift

operation de�ned in section 4:

De�nition 10. Let t, s be two terms of a sort in SI and let θ be a shift. θ−1t (s)
denotes the term de�ned as follows:

θ−1t (s)
def

=

{
tσ if s = tθσ, for some substitution σ
s otherwise

Example 7. If θ = {x 7→ f ′(x)} then θ−1
f(x)(f(f

′(g(x)))) = f(g(x)),

θ−1
f(g(x))(f(g(f

′(x)))) = f(g(x)) and θ−1
f(g(x))(f(f

′(g(x)))) = f(f ′(g(x))).

For every term t, we denote by size(t) the size of t.

Proposition 2. Let t, s be two terms of a sort in SI and let θ be a shift. If
s � tθ and dom(θ) = var(t) then size(θ−1t (s)) < size(s).

Proof. By de�nition, s is of the form tθσ, for some substitution σ, and then
θ−1t (s) = tσ. Let {x} = dom(θ). For all terms u and for all substitutions η, we
have obviously: size(uη) = size(u) + Σy∈V (size(yη) − 1), where V denotes the
multiset of the occurrences of variables in u. In particular, if u is a non-ground
term of a sort in SI , we have size(uη) = size(u)−1+size(yη), where y denotes the
(necessarily unique) variable in u. Thus we have: size(tσ) = size(t)−1+ size(xσ)
(since {x} = dom(θ) = var(t)) and (since xθ contains x): size(tθσ) = size(t)−1+
size(xθ)− 1+ size(xσ). Since θ is a shift, xθ can be neither a variable (otherwise
θ would be a renaming) nor a constant (otherwise θ would be ground). Thus we
have size(xθ) > 1 and size(tθσ) > size(tσ).

Proposition 3. Let t be a term and let θ be a shift. Let t1, t2 be two terms such
that tθ � t1, t2. If t1 6= t2 then θ−1t (t1) 6= θ−1t (t2).

Proof. Since tθ � ti, ti is of the form tθσi, whence θ
−1
t (ti) = tσi. If t1 6= t2 then

σ1 6= σ2, whence θ
−1
t (t2) 6= θ−1t (t2).

The following lemma semantically relates the operations shift(S, t, θ) and θ−1t .

Lemma 1. Let t be a term, let S be a t-set, let θ be a substitution and let I be
a model of shift(S, t, θ) such that tθ � I(α). The interpretation J such that:



� =J is identical to =I ,

� and J (α) def

= θ−1t (I(α)),

validates S.

Proof. Let C be an (α,C)-clause in S. Let C ∈ C, then by De�nition 3 we have
shift(S, t, θ) = C, thus I |= C. Moreover, I and J coincide on C since C does
not contain α. Thus J |= C. Now, assume that C is of the form α 6≈ s ∨D. Let
σ be a ground substitution of the variables in C. We must show that J |= Cσ.
By de�nition, since S is a t-set, we have s � t, hence s is of the form tη, for
some substitution η. Then shift(C, t, θ) = α 6≈ tθη ∨D. Since I |= shift(C, t, θ),
we must have I |= shift(C, t, θ)σ, hence I |= α 6≈ tθησ ∨ Dσ. If I |= Dσ, then
we have J |= Dσ and thus J |= Cσ (since I and J coincide on all clauses
not containing α). If I |= α 6≈ tθησ, then necessarily I(α) 6= tθησ, thus by
Proposition 3 θ−1t (I(α)) 6= θ−1t (tθησ) and J (α) 6= tησ, whence J |= Cσ.

Main proof:

Let I be a model of S. We assume that I(α) = tγ, for some ground substitution
γ, and we derive a contradiction.

Since T is covering, there exists i ∈ [1, n] such that tγ � ti. Since I |= S and
Si ⊆ S, we have I |= Si. W.l.o.g., we assume that the interpretation I is chosen
in such a way that size(I(α)) is minimal among the interpretations satisfying
the previous property, i.e. for every interpretation J , if size(J (α)) < size(I(α))
and if there exists j ∈ [1, n] such that J (α) � tj then J 6|= Sj .

Since I |= Si, we have Si 6|= α 6≈ tγ (since I(α) = tγ). By Property 2, this
implies that there exists j ∈ [1, n] such that Si |= shift(Sj , tj , θtγ) and tγ � tjθtγ .
Then I |= shift(Sj , tj , θtγ). Let J be the interpretation de�ned as follows: =J is

identical to =I , and J (α)
def

= θ−1tγ (I(α)). By Lemma 1, since I |= shift(Sj , tj , θtγ)
and Sj is a tj-set, we have J |= Sj . Since I(α) = tγ � tjθtγ , we have J (α) =
θ−1tγ (tj) � tj . Furthermore, by Proposition 2, size(J (α)) < size(I(α)). By the
minimality of I, we deduce that J 6|= Sj , a contradiction.

C Proof of Theorem 3

The proof is based on an analysis of how the rank is a�ected by logical inferences:

Proposition 4. If P1, P2, C are (α,C)-clauses such that P1, P2 ` C then
rank(C) = ⊥ i� rank(P1) = rank(P2) = ⊥.

Proof. Since the disequation containing α is never selected, if such a disequation
occurs in P1 or P2 then its instance must occur in C. Thus if α does not occur
in C then it occurs neither in P1 nor in P2 i.e. rank(P1) = rank(P2) = ⊥. The
other sense of implication is trivial because if α does not occur in P1, P2 it will
certainly not occur in C.

Lemma 2. If P1, P2, C are (α,C)-clauses such that P1, P2 ` C and P1, P2 are
index-�at then C is index-�at and rank(Pi) ∈ {⊥, rank(C)} (up to a renaming).



Proof. Since P1, P2 are index-�at, by Condition (c2), the m.g.u. is necessar-
ily a renaming. Thus C is index-�at. If rank(C) = ⊥ then, by Proposition 4,
rank(P1) = rank(P2) = ⊥. If rank(C) 6= ⊥ then C is of the form α 6≈ t ∨ C ′. By
de�nition, there exists i ∈ {1, 2} such that Pi is of the form α 6≈ t′ ∨C ′′, t′ must
be a renaming of t. Then rank(C) = rank(Pi).

Lemma 3. If P1, P2, C are (α,C)-clauses such that P1, P2 ` C and C is not
index-�at, then rank(Pi) ∈ {⊥, rank(C)} (up to a renaming).

Proof. If rank(C) = ⊥ then, by Proposition 4, rank(P1) = rank(P2) = ⊥ . If
rank(C) 6= ⊥ then since C is not index-�at, C is of the form α 6≈ t∨D, where t is
a term such that D ∈ C contains an index of the form f(x). By Lemma 2, there
exists i ∈ {1, 2} such that Pi is not index-�at. Pi is of the form α 6≈ ti∨Di, where
t = tiσ and σ is the considered uni�er. By (c2) we have t = ti (up to a renaming)
whence rank(Pi) = rank(C) = succ(t). Moreover, if the other parent Pj (j 6= i)
is index-�at then it is either of rank ⊥ or, by (c2), of the form α 6≈ succ(t) ∨Dj

(where Dj ∈ C and is index-�at) whence rank(Pj) = rank(C) = succ(t). If Pj
is not index-�at then it is either of rank ⊥ or, by (c2), of the form α 6≈ t ∨Dj

(where Dj ∈ C and is not index-�at), whence rank(Pj) = rank(C) = succ(t).

Lemma 4. If P1, P2, C are (α,C)-clauses such that P1, P2 ` C then
rank(Pi) ∈ {⊥, rank(C), succ(rank(C))} (up to a renaming).

Proof. If C is not index-�at then by Lemma 3, rank(Pi) ∈ {⊥, rank(C)}. If C is
index-�at and P1, P2 are index-�at then by Lemma 2, rank(Pi) ∈ {⊥, rank(C)}.
The remaining case is when C is index-�at and P1, P2 are not i.e. ∃i ∈ {1, 2}
such that Pi is not index-�at which brings us to the following cases :

� If rank(C) = ⊥ then, by Proposition 4, rank(P1) = rank(P2) = ⊥
� If rank(C) 6= ⊥ then C is of the form α 6≈ t ∨D and by Condition (c2), Pi
is either of the form α 6≈ t ∨Di or α 6≈ succ(t) ∨Di (or of rank ⊥) :
• In the case where Pi is of the form α 6≈ t ∨ Di, if Pi is index-�at then
rank(Pi) = t, If Pi is not index-�at then rank(Pi) = succ(t). Thus
rank(Pi) ∈ {rank(C), succ(rank(C))}.

• In the case where Pi is of the form α 6≈ succ(t) ∨ Di, by (c2), Pi is
necessarily index-�at (otherwise a uni�er of the form x 7→ f(y) would
not be allowed and α 6≈ t∨D could not be deduced from α 6≈ succ(t)∨Di),
thus rank(Pi) = succ(t) = rank(C).

The previous lemmata entail the following key result, showing that, for every
t � s, a clause of rank s can always be derived from (α,F)-clauses of rank t or
⊥:

Lemma 5. Let r be a term. Let S be a set of (α,C)-clauses such that for every
clause D ∈ S, rank(D) = ⊥ or rank(D) � r. Let C be an (α,C)-clause such that
S `∗ C and r � rank(C). There exists a set of (α,F)-clauses S′ of rank r such
that S `∗ S′ and S〈⊥〉 ∪ S′ `∗ C.



Proof. Let C be a clause deducible from S and satisfying one of the following
induction hypotheses:

1. r � rank(C)
2. r = rank(C) and C is not index-�at

Let S′ be the set of (α,C)-clauses satisfying the property of the lemma. We
prove that S′∪S〈⊥〉 ` C by induction on the derivation that generates C. Since
rank(C) � r we have C 6∈ S hence C is derived from two (α,C)-clauses P1, P2.
We prove that S′ ∪ S⊥ ` P1, P2 which leads to S′ ∪ S〈⊥〉 ` C. We do a case
study on the rank of Pi, i ∈ {1, 2} :

� If rank(Pi) = ⊥ then by Proposition 4, S〈⊥〉 ` Pi.
� If r � rank(Pi), for some i ∈ {1, 2} then Condition 1 is satis�ed. Since
the derivation generating Pi is lower than the derivation generating C then
S′ ∪ S〈⊥〉 ` Pi.

� If rank(Pi) � r, for some i ∈ {1, 2} then we prove that rank(Pi) = r.
• If C satis�es Condition 1 i.e. r � rank(C), then, by Lemma 4, rank(Pi) =
succ(rank(C)) = r because rank(Pi) � r.

• If C satis�es Condition 2 i.e. rank(C) = r and C is not index-�at then,
by Lemma 3, rank(Pi) = rank(C) = r.

Since rank(Pi) = r, if Pi is not index-�at then Pi satis�es Condition 2, as
the derivation generating Pi is lower than the derivation generating C, we
conclude that S′ ∪ S〈⊥〉 ` Pi. If Pi is index-�at, we prove that Pi ∈ S′.
If Pj , j = 3 − i is not index-�at then there exists a clause D = Pj such
that Pi, D ` C which means Pi ∈ F, thus Pi ∈ S′. If Pj is index-�at then
by Lemma 3, C is index-�at and rank(Pi) = rank(C) and C is satisfying
Condition 1, so is Pi, ∀i ∈ {1, 2}, thus S′ ∪ S〈⊥〉 ` Pi.

Main proof:

Since F is �nite, the number of subsets of F is also �nite, up to a renaming
of variables. Let k be any natural number strictly greater than the number of
such clause sets. Let S′ be the set of (α,C)-clauses in S of a rank r such that
size(r) ≤ k.

Let t be a ground term of the sort of α. By Lemma 6, S contains a clause
subsuming α 6≈ t. If size(t) ≤ k then this clause also occurs in S′. Now, assume
that size(t) > k. Then t is of the form f1(f2(. . . (fn(a)) . . .)), where n ≥ k. Let
ti = f1(f2(. . . (fi(x)) . . .)) (with i ∈ [1, n]). We have t1 � t2 � . . . � tn � t. By
de�nition, for every term r, F(S′〈r〉) is a set of clauses of the form α 6≈ r′ ∨ C
(up to a renaming of variables), where C ∈ F and either r′ = r or r = succ≺(r′).
By the pigeonhole argument, since n ≥ k, there exist two indices i < j such that
the clausal part of F(S′〈ti〉) and F(S′〈tj〉) are identical. In this case, F(S′〈ti〉)
and F(S′〈tj〉) are identical up to a shift x 7→ fi+1(. . . (fj(x)) . . .), and we must
have F(S′〈tj〉) = shift(S′〈F(ti)〉, ti, θ), where θ = {x 7→ fi+1(. . . (fj(x)) . . .)}.

Let S ′ be the set containing all clause sets F(S′〈tj〉) (where t ranges over
the set of terms such that size(t) > k). Similarly, let S be the set containing all
clause sets F(S′〈tj〉) and all clause sets of the form {α 6= t}, for every t such that



size(t) ≤ k. Since F is �nite, these sets are also �nite, and they must be of the
form S = {F(S′〈tli〉) | l ∈ [1,m]} ∪ {α 6≈ t | size(t) ≤ k}. and S ′ = {F(S′〈tlj〉) |
l ∈ [1,m]} ∪ {α 6≈ t | size(t) ≤ k}..

By de�nition, S′〈tli〉 is a tli-set and the terms t1i , . . . , t
l
m, together with the

ground terms of size lower or equal to k, are covering. Moreover, by de�nition
of S ′, for all ground terms s, there exists a set F(S′〈tlj〉) such that tlj � s. By

Lemma 5, since tli � tlj , we have S〈⊥〉∪F(S′〈tli〉) ` S〈⊥〉∪F(S′〈tlj〉). Finally, since
F(S′〈ti〉) and F(S′〈tj〉) are identical up to a shift θl : x 7→ fi+1(. . . (fj(x)) . . .),
we must have S〈⊥〉 ∪ F(S′〈tlj〉) = shift(S〈⊥〉 ∪ F(S′〈tli〉), ti, θl), with tlj = tliθl.

Since s � tlj we have s � tliθl.
Thus all the conditions of Theorem 2 are satis�ed, and a clause of the form

α 6≈ x is derived from S′. Since S is saturated, this clause must be redundant
w.r.t. S.

D Proof of Theorem 4

The following de�nition transforms a set of (α,C)-clauses into a set of standard
clauses by �xing the value of α:

De�nition 11. Let S be a set of (α,C)-clauses and let t be a term. We denote
by S∗t the set of (standard) clauses obtained from S by:

� Deleting every clause of the form α 6≈ t∨D where t and s are non-uni�able.
� Replacing every remaining clause of the form α 6≈ t ∨D by Dσ where σ =

mgu(t, s).

The following lemma relates the semantics of S and S∗t :

Lemma 6. Let S be a set of (α,C)-clauses and let t be a ground term of the
same sort as α. If S∗t is saturated and does not contains the empty clause, then
S has a model I such that I(α) = t. Therefore, if S is saturated and contains no
(α,C)-clause subsuming α 6≈ t, then S has a model I such that I(α) = t.

Proof. (sketch) By de�nition of the semantics, if I(α) = t, then I |= S i� I |= S∗t .
Then the �rst part of the proof follows from the completeness of the superposition
calculus. Finally, it is easy to check that if S is saturated then so is S∗t , whence
the second result.

Lemma 7. If S is saturated w.r.t. a ground term t and does not contain a clause
of the form α 6≈ s, where s � t, then S is satis�able.

Proof. (sketch) By de�nition, if S is saturated w.r.t. t, then S∗t must be satu-
rated. Hence S is satis�able.

Let S be a set of (α,C)-clauses. If S is unsatis�able, then by Theorem 3 an
unsatis�able clause of the form α 6≈ x can eventually be derived, which allows
one to conclude to the unsatis�ability of S. If S is satis�able, then there exists
a term t such that S∗t is satis�able. By de�nition, S∗t only depends on clauses
of rank ⊥ or of a rank s � t. If C is �nite, the number of such (α,C)-clauses
is also �nite, hence this set of (α,C)-clauses is eventually saturated. Then S is
saturated w.r.t. t and by Lemma 7, the search can be stopped.


