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Abstract : En classification, les données se présentent souvent sous la forme d’une
matrice de données dont les lignes représentent les instances d’un type d’objets, et les
colonnes leurs caractéristiques. Cependant, dans de nombreuses applications, plusieurs
types d’objets liés par des relations peuvent exister, ce qui conduit à avoir plusieurs
matrices représentant chacune une vue particulière sur les données. C’est ainsi le cas
dans l’étude des réseaux sociaux ou les différents nœuds d’un graphe d’interaction font
intervenir des utilisateurs, des documents, des termes, etc. Dans le contexte de la co-
classification (co-clustering), l’algorithme χ-Sim (Grimal & Bisson, 2011), qui permet
de calculer conjointement les similarités entre les lignes et les colonnes d’une matrice
de données, s’est avéré dépasser significativement les résultats de l’état de l’art sur
plusieurs jeux de tests standards. Dans ce papier, nous introduisons une architecture
générale permettant d’étendre les capacités de cet algorithme de calcul de co-similarité
afin de le rendre apte à travailler sur des collections de matrices décrivant les relations
entre plusieurs paires d’objets différents (multi-view clustering). Nous montrons que
cette architecture offre non seulement un cadre formel intéressant mais quelle permet
en outre de délivrer souvent des résultats supérieurs ou égaux aux approches classiques
mono-relation tout en permettant, grâce à une parallélisation possible des calculs, de
réduire la complexité en temps et en espace des problèmes traités.

Mots-clés : Classification multi-vue, Co-clustering, Co-similarité, Parallélisation.

1. Introduction

The clustering task consists in organizing instances of objects into homoge-
neous and contrasted groups, so that instances in a given cluster are more
similar than instances in different clusters. Most of the clustering methods
in the literature focus on datasets described by a unique data matrix, which
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can either be a feature matrix (objects described by their characteristics), or
a relation matrix (intensity of the relation between instances of two types of
objects1). In the latter case, both types of objects can be clustered, methods
dealing with this task are referred as co-clustering approaches and have been
extensively studied during the last decade.

However, in many applications, datasets involving more than two types of
interacting objects, or simply related, are frequent. For instance, in a social
network we can have simultaneously some relations between pairs of users,
users and documents, and documents and terms. A simple way to represent
such datasets is to use as many matrices as there are relations between the
objects. Then, one could use classical (co-)clustering methods to separately
cluster the objects occurring in the different matrices but in this way, inter-
actions between objects would not been taken into account leading to a huge
loss of information. In the following, we refer to this problem as multi-view
clustering, each view being described by a relation matrix. Therefore, multi-
view learning represents a great challenge for learning approaches.

The present work is an extension of an existing algorithm, named χ-Simk
p

(Bisson & Hussain, 2008; Hussain et al., 2010), which obtained good results
on the co-clustering task. We selected this approach for two reasons. First,
it simultaneously builds similarity matrices between the objects described in
a data matrix; this is useful in the multi-view context since it allows us to
combine easily the set of similarities measures, which have been computed
from the different relation matrices of the dataset. Second, in this algorithm,
the similarity matrices between objects can be externally initialized, allowing
us to easily inject some a priori knowledge on the data; thus, it becomes
possible to imagine a way to convey the similarities computed in one view to
the others through an iterative process.

The rest of this paper is structured as follows. In Sect. 2 we define more for-
mally the multi-view clustering problem, and we present some related work.
In Sect. 3 we provide some insight about the χ-Simk

p method and then, in
Sect. 4, we present and analyze a general framework allowing to adapt this
algorithm to multi-view’s needs. In Sect. 5, experimental results on some
classical datasets are presented allowing to see the improvements provided by
our approach with respect to the classical single view clustering. Finally, in
Sect. 6, we present conclusions and future work.

1Such as [documents/terms] in NLP or [genes/expression] in genomics, for instance.
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2. Definition and related work

As we said in the introduction, the co-clustering task has been intensively
explored in many research domains during the last decade. In information
retrieval, to deal with the co-clustering of documents according to their words
and topics (Dhillon, 2001; Ingaramo et al., 2010; Liu et al., 2004; Long et al.,
2005; Rege et al., 2008; Yen et al., 2009; Zanghi et al., 2010); in bioinformat-
ics, to analyze gene expression data (Cheng & Church, 2000; Iam-on et al.,
2010; Madeira & Oliveira, 2004; Speer et al., 2004); and in social networks,
to detect community of users (Barber, 2007; Cruz Gomez et al., 2011; Du
et al., 2007; Duch & Arenas, 2005; Fortunato, 2010). As emphasized by Long
et al. (2005) and Bisson & Hussain (2008), co-clustering comes along with
the double advantage of improving the cluster quality when dealing with large
dimensional sparse matrices, and of highlighting similarities between objects
described by a priori different set of features.

Following the case of co-clustering, in the multi-view context the idea is
to take into account all the types of objects and their multiple relations de-
scribed in the dataset, in order to improve the quality of the resulting clus-
tering. An example of a simple multi-view dataset can be found when con-
sidering a movies database, in which a movie is described both by the actors
appearing in it, and by the keywords used to describe it.

When considering such a dataset, two equivalent representation paradigms
can be used: the first one is the collection of matrices, and the second one
the k-partite graph (Long et al., 2006). Within the k-partite graph2 paradigm,
a given subset of nodes contains the instances of one type of objects, and a
link between two nodes of different subsets represents the relation between
these two nodes. Alternatively, when working with a collection of matrices,
each matrix describes a view on the data, i.e. a relation between two types of
objects, one type of objects represented by the rows and the other one by the
columns of the matrix. In our previous movie database example, we would
have two matrices: a [movies/actors] matrix and a [movies/keywords] one.

Let’s notice that in the rest of this paper, we will mostly use the later
paradigm to represent the datasets, as it is better suited to explain our al-
gorithm. Moreover, we will not consider relations linking more than two
types of objects. Such relations can exist and may be described, either by an
hyper-graph, or by a tensor (multidimensional generalization of the matrices)

2A graph is said to be k-partite when the nodes are partitioned into k subsets with the
condition than no two nodes of the same subset are adjacent.
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as in Acar & Yener (2009); Banerjee et al. (2007).
Compared with classical clustering and co-clustering, the field of multi-

view clustering has not been as thoroughly explored so far. Multi-view setting
became highly popular with the seminal work of Blum & Mitchell (1998),
in which the authors trained two algorithms on two different views, intro-
ducing semi-supervised learning. Since then, several extensions of classical
clustering methods have been proposed to deal with multi-view data. For ex-
ample, Bickel & Scheffer (2004); Drost et al. (2006) describe extensions of
the classical k-means and EM algorithms for the multi-view setting. Some
approaches, such as the Canonical Correlation Analysis (Chaudhuri et al.,
2009), first extract relevant features from the multiple views, and then apply
classical clustering algorithms to it.

In addition, the framework of spectral clustering has also been investi-
gated (de Sa, 2005; Kumar & Daume III, 2011; Long et al., 2006; Zhou &
Burges, 2007), where most approaches consider a multi-partite graph describ-
ing the relations between objects and aim at finding the optimal cut of this
graph. In Kumar & Daume III (2011), the similarities computed in one view
are used to constrain the similarities computed in the other views. We can also
cite Bekkerman et al. (2005) where the authors separately perform clustering
on each view, but simultaneously maximize a unique objective function based
on the mutual information between clusters.

Alternatively, closer to our approach, some works aim at combining mul-
tiple similarity matrices to perform a given learning task (de Carvalho et al.,
2012; Frigui et al., 2007; Tang et al., 2009). In Tang et al. (2009) information
coming from different views (or sources) and describing different relations
between the same instances are merged using Linked Matrix Factorization.
Similarly de Carvalho et al. (2012) is building clusters from multiple similar-
ity matrices computed from different views of a dataset. The algorithm learns
a relevance weights matrix between classes and views, taking into account
that some views may be better at describing some classes. Finally, in Pedrycz
(2002), fuzzy clustering is used in the multi-view setting, by first computing
membership matrices for every objects in the different views, and modify-
ing these matrices through collaboration between the views. The end goal is
quite different from other approaches though, as this method produce as many
clusterings as views, without trying to obtain a sole clustering.
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3. The χ-Simk
p Algorithm

Throughout this paper, we will use the classical notations: matrices (in capital
letters) and vectors (in small letters) are in bold; variables are in italic.

Type of objects: let N be the number of different types of objects consid-
ered in the dataset. ∀i ∈ 1..N, Ti is the type of objects i (i.e. users, documents,
movies, words, etc.) For the sake of simplicity, we consider that each Ti has
always the same number of ni instances across the collection of matrices.

Relation matrices: let M be the number of relations between objects in the
dataset, and thus the number of matrices in the collection. Then Ri j is the
relation matrix describing the relation between objects Ti and Tj, of size ni×
n j. The element (Ri j)ab of a matrix expresses the link ‘intensity’ between the
ath instance of Ti and the bth instance of Tj. For instance, in a document/term
matrix it can be the frequency of the bth term in the ath document.

Similarity matrices: we can thus consider N similarity matrices S1 . . .SN .
Then Si (of size ni× ni) is the square and symmetrical matrix that contains
the similarities between all the pairs of instances of Ti. The values of the
similarity measure must be in [0,1].

3.1. Presentation of χ-Simk
p

In this section, we present the main aspects of the χ-Simk
p co-similarity mea-

sure which is a basic component of our architecture to deal with multi-view
datasets. As this algorithm processes one matrix at a time, we can simplify
the previous notations and we consider two types of objects T1 and T2, linked
together by the relation matrix R12. Moreover, we will assume that R12 is
a [documents/words] matrix, and that the task is to compute the similarities
between every pair of documents and every pair of words.

The main idea of the χ-Simk
p method is to make use of the duality between

documents and words (each one being a descriptor of the other) by simultane-
ously generating the similarity matrices S1 (documents) and S2 (words). This
is achieved by calculating similarities between documents on the basis of the
similarities between their words, and similarities between words on the basis
of the similarities between the documents in which they appear. Similar ideas
have also been used for supervised leaning in Liu et al. (2004) or for image
retrieval in Wang et al. (2004). With such approaches, documents (respec-
tively words) can be seen as similar even if they do not explicitly share words
(respectively documents), which is a great feature to deal with language diffi-
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culties such as terminological variability 3. Once the similarity matrices have
been generated with χ-Simk

p, they can be used by any classical clustering tool
(k-means, etc.) to organize documents and/or words; however, due to the
way these similarities have been built, the resulting clusters are comparable
to those obtained with a genuine co-clustering algorithm.

Figure 1: Example of a documents-words bi-partite graph.

To illustrate in an intuitive way the method, let us consider the toy dataset
in Fig. 1 extracted from Hussain et al. (2010). Documents d1 and d4 do not
share any words and thus their similarity would be equal to 0 with a classical
similarity measure. However, as words w3 and w4 are both appearing in docu-
ment d3, they have a non-null similarity value in S2; therefore, as document d1
contains word w3 and document d4 contains word w4, the resulting similarity
between d1 and d4 in S1 will not be null.

In practice, the similarity matrix S1 between documents is defined in two
steps (see Hussain et al. (2010) for complete details and justifications):

S1 = R◦k
12×S2×

(
R◦k

12
)T (1)

∀a,b (S1)ab←

(
(S1)ab√

(S1)aa× (S1)bb

)1/k

(2)

First, Eq. (1) defines the similarity matrix S1 according both to the data
matrix R12 and to the similarity matrix between words S2, with

(
R◦k

12
)

ab =

(R12)
k
ab being the element-wise exponentiation of M to the power of k. Sec-

ond, Eq. (2) allows to normalize the elements of S1 in [0,1]. The k parameter

3Two documents written by two different authors dealing with the same topic, may con-
tain different words if their respective author has used a different vocabulary. In such case,
classical similarity measures, such as Cosine, lead to underestimate the real similarity be-
tween documents and/or between words.
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is analogous to the one used in the Lk-norm (Minkowski distance), the idea
being to adjust this parameter as suggested in Aggarwal et al. (2001) to deal
with high dimensional spaces. Symmetrically, the similarity matrix S2 be-
tween words is defined as follows:

S2 =
(
R◦k

12
)T×S1×R◦k

12 (3)

∀a,b (S2)ab←

(
(S2)ab√

(S2)aa× (S2)bb

)1/k

(4)

3.2. Computation algorithm

Clearly, equations (1)-(2) and (3)-(4) define a system of linear equations,
whose solutions correspond to the co-similarities of each pair of documents
and each pair of words. Thus, the χ-Simk

p algorithm proposed in Hussain
et al. (2010) is based on an iterative approach, in which each iteration t con-
sists in evaluating the similarities brought by the order-t paths of the docu-
ments/words bipartite graph (see Fig. 1). The algorithm is as follows:

Algorithm 1 The χ-Simk
p algorithm

Input: R12, It, k, p
Output: S1, S2

S(0)
1 ← I

S(0)
2 ← I

for t = 1→ It do
Compute S(t)

1 with S(t−1)
2 using Eq. (1) and Eq. (2)

Compute S(t)
2 with S(t−1)

1 using Eq. (3) and Eq. (4)
Pruning step on S(t)

1 and S(t)
2 consisting of zeroing p% of the matrices

end for

The inputs of this algorithm is the relation matrix R12, the number It of iter-
ations to compute the final values of S1 and S2 and two numerical parameters
k and p. We discussed the meaning of k in the previous section. Concerning p,
it indicates the percentage of the smallest similarity values in the matrices S1
and S2 to set to zero at the end of each iteration; this allows to deal with noise
in the data. A discussion about this step being out of the scope of this paper,
the interested reader can find further information in Hussain et al. (2010).
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We need to emphasize that S(0)
1 and S(0)

2 are both initialized to the identity
matrix, nevertheless these matrices could be initialized to other values and, in
practice, can be seen also as two input parameters. This is used by Hussain &
Bisson (2010) in order to adapt this algorithm for text categorization. In this
case, input matrices indicate some a priori knowledge about the similarity
values between documents and between words. In the next section we are
going to use this feature for multi-view clustering.

4. An architecture to compute multi-view co-similarities

As we saw in Section 3., from a functional point of view, the χ-Simk
p method

can be represented in the following way (Fig. 2) where S1 and S2 are the input
similarity matrices and S′1 and S′2 the matrices learned by the algorithm (and
previously denoted S1 and S2 in the section 3.). This diagram is the basic
component we used to deal with multiple matrices.

X-Sim
{It, k, p}

S1
S2

S'1
S'2

R

Figure 2: Functional diagram of χ-Simk
p.

4.1. A general learning architecture

In this section, we now consider a very general model in which the learning
dataset is composed of M relation matrices Ri j, describing the connection be-
tween N different types of objects Ti. Thus, the relational structure of this
dataset is a clique since each pair of objects is connected through a data ma-
trix. Our goal is then to compute a co-similarity matrix Si for each of the
N kinds of objects. The idea behind our learning architecture is to create a
learning network isomorphic to the dataset (Fig. 3).

At first, an instance of χ-Simk
p algorithm is associated to each relation ma-

trix Ri j. This instance is denoted χ-Sim (i, j) and computes two similarity
matrices S′i and S′ j. For sake of simplicity, we consider now that the pa-
rameters k, p, and It are set to the same values for every instances χ-Sim
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(i, j). Next, for a given type of object Ti, as these instances produce a set of
different similarity matrices {S′i,S′′i, ...}, we also need to introduce an ag-
gregation function, denoted Σi, to compute a consensus matrix merging the
current matrix Si and the set of matrices produce by the instances χ-Sim(i, j).
The dynamic of this network will be discussed in the next section 4.2.

SN

X-Sim12

R13 R23

•••

•••

•••

∑1 ∑2 ∑3

X-Sim23

S2

X-Sim13

∑N

X-Simij

Rij

S1 S3

R12

Figure 3: Diagram of the generic architecture for the multi-view clustering.
In this figure, we have a complete linkage between the objects T1,
T2 and T3.

The topology presented in figure 3 assumes a complete linkage between
the objects Ti. However, in practice, other situations may occur. First of all,
in many cases, relationships among several objects are missing. For instance,
taking back our movie database example (Section 2.): movies are described
by two matrices, [movies/actors] and [movies/keywords], but there is no [ac-
tors/keywords] relation; in such case the corresponding χ-Sim(i, j) and Σi in-
stances and their associated links, will be simply absent of the network. But,
it is important to notice that the outputs of χ-Sim(i, j) are always connected
to the co-similarity matrix Si through the Σi and Σ j functions.

Secondly, in some dataset several relation matrices exist between two ob-
jects: indeed, for a given collection of emails, one can define two matrices
[users/words], the first one describing the word occurrences in the subjects
of the email and the second in their bodies; in such case, there will be two
instances of χ-Sim(i, j) in the network, one for each relationship.

Third, a relation can link an object Ti with itself as for a [users/users] ma-
trix denoting the relation ”has sent an email to”; here, if the relationship is
asymmetrical there will be two similarity matrices if we want to differentiate
the sender (Si→) from the receiver (Si←), else when the relationship is seen
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as symmetrical just one occurrence of Si will exist linked to both inputs of the
instance χ-Sim(i, i). To conclude, we must notice that all of these variants are
totally supported by our architecture.

4.2. Dynamic of the network and algorithm

As we saw in Fig. 3, the similarity matrices Si are connected to the inputs of
each corresponding χ-Sim(i, j), allowing the system to spread the information
in the network. Thus, with this architecture, various scheduling policies may
be considered, about the order in which instances of both χ-Sim(i, j) and Σi
are fired. One may consider mainly two opposite policies:

• Asynchronous : the χ-Sim(i, j) instances are sequentially run in a static
or dynamic order and the similarity matrices Si are progressively up-
dated with Σi. The problem with this approach is that the order matters:
the last instance χ-Sim(i, j) fired will tend to shift Si and S j toward the
implicit similarities expressed by its relation matrix Ri j. Thus, without
any prior knowledge about the relative interest of the relation matrices
this approach seems difficult to optimize.

• Synchronous : the χ-Sim (i, j) instances are run in parallel then the
similarity matrices Si are simultaneously updated with Σi. This policy
offers several benefits. First, all the instances of χ-Sim (i j) have the
same influence (that could be adjusted by adding some weighting pa-
rameters in Σi). Second, it becomes possible to study the convergence
criteria of the system according to the way Σi are defined. Third, this
approach allows to do a strong parallelization of the processes, since
each instance could be executed on a different core of the CPU.

The synchronous approach can be seen as a generalization of the χ-Simk
p

algorithm in the sense that it computes the different Si matrices as the system
just iterates several times equations (1)-(2) and (3)-(4) for each instance of
χ-Sim (i, j). By the way, it becomes possible to set to 1 the parameter It
of each χ-Sim (i, j) and to introduce a more general parameter, denoted IG,
indicating the global number of iterations to perform in the network. As with
χ-Simk

p this number of iterations can be generally set to the value 4, leading
the system to explore the similarities brought by the order-4 paths of bipartite
graphs associated to each matrix Ri j.
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In this schema, the Σi functions have an important role to play: first, they
aggregate the multiple similarity matrices produced by the χ-Sim (i, j) in-
stances into one unique similarity matrix; second, the way they are defined
must ensure the convergence of the method. Concerning the first point, in
an unsupervised learning framework and without any prior knowledge, few
strategies can be considered, namely the minimum, the maximum and the av-
erage of the similarity values for each pair of objects. In the experimental part
(section 5.) we will use the similarity averages. Concerning the convergence
we can define each Σi in such a way it does not replace the current similar-
ity matrix Si by the new consensus matrix but rather it adds this one to the
previously computed Si weighted by a damping factor.

Thus, under some conditions, convergence of the system can be ensured.
More formally, let assume λ ∈ [0,1[ to be a damping factor, F to be a merging
function (minimum, maximum, average, etc.) of the matrices {S′i, S′′i, ...}
returning a matrix which values are all in [0,1], and S(t−1)

i the previously
computed similarity matrix of instances of Ti, the generic formula used to
compute the aggregated matrix at iteration t is as follows:

Σi =
1

1+λ t

(
S(t−1)

i +λ
t×F(S′i,S′′i, . . .)

)
(5)

As the F function is bounded and the damping factor λ t is exponentially
decreasing, this formula ensure the convergence of the sequence composed
of the successive similarity matrices computed by the Σi function. In the
experiments, λ equals 0.5. The complete algorithm is as follows:

Algorithm 2 The multi-view algorithm
Input: A collection of relational matrices {Ri, j}, IG, k, p
Input: Parameters (IG, λ , k, p) — Default values (4, 0.5, 0.8, 0.4)
Output: A collection of similarity matrices {Si}

foreach i : Si← I
for t = 1→ IG do

Execute every χ-Sim(i, j) with parameters It=1, k, p
Update every Si using Eq. (5).

end for
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4.3. Complexity and parallelization

The complexity of the multi-view architecture is obviously closely related to
the one of the χ-Simk

p algorithm (see algorithm 1). Let a relational matrix
Ri, j of size n by p, as this algorithm consists in the multiplication of three
matrices, the complexity to compute a similarity matrix of size n2 between
raws is O(np2 +n2 p) and identical to the complexity to compute a similarity
matrix of size p2 between columns. In the multi-view architecture, as each
instance of χ-Sim(i, j) can easily run on an independent core of a CPU, the
method can be easily parallelized, the global similarity remaining unchanged.
Let notice that the functions Σi have a quadratic complexity in O(p2) or O(n2)
and thus can be ignored.

Until now, we considered the multi-view clustering as a way to combine
knowledge coming from different sources of data. However, this approach
can be also interesting to turn a large problem into a collection of simpler
ones. For example, let us consider a problem with one relational matrix
[documents/words] of size n by p in which we just want to cluster the doc-
uments. If the number of words is huge with respect to the number of doc-
uments, we could split the problem into a collection of h matrices of size
n by p/h. By using the multi-view architecture we gain both in time and
space complexity: indeed, the time complexity decreases from O(np2 +n2 p)
to O(1/h2(np2)+ 1/h(n2 p)) leading to an overall gain of 1/h when n < p.
In the same way the memory needed to store the similarity matrices between
words decreases in 1/h.

5. Experiments

In this section, we present the experiments conducted to assess the perfor-
mance of our multi-view architecture on real-world datasets. More precisely,
we tried to answer two questions discussed in two separated sections:

1. Does the co-similarity based multi-view architecture allow to provide
better results than the classical co-clustering methods working on only
one relation matrix? (section 5.1.)

2. Is the splitting approach, proposed in section 4.3., an efficient way to
deal with large matrices in the same amount of runtime and memory
space thanks to the parallelization of the algorithm? (section 5.2.)
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As we are in the clustering context, our evaluation is classically based on
the following method. First, we select some dataset in which labeled clusters
already exist and then we evaluate the correlation degree between the learned
and known clusters by the analysis of the confusion matrix using for instance
the micro-averaged precision (Pr) from Dhillon et al. (2003).

5.1. Evaluation of the multi-view approaches

Test dataset. We used seven databases, the quantitative characteristics of them
being described in Table 1. The first dataset is extracted from the IMDb4

website. Some pre-processing steps has been done in order to remove the
rarest actors and keywords. We have three types of objects: movies, actors
and keywords; and two relation matrices: the [movies/actors] matrix and the
[movies/keywords] matrix. In addition, we built a third matrix which is the
concatenation of the two previous matrices, referred to as [Key+Act], in order
to provide the single-view approach with a dataset containing all the data.

Content In/out

∑d

X-Sim1

∑w

X-Sim2

DW

Figure 4: Architecture used to deal with the Web data.

The six other databases concern Web data and are all constructed on the
same structure with two types of objects (Documents and Words) and four
relations matrices. The [documents/words] matrix describes the content of the
documents using a classical bag of words representation, and the three other
[documents/documents] matrices corresponding to the inbound, outbound and
citation links between documents. However, on the one hand the outbound
is just a transposition of the inbound matrices and on the other hand, the
citation matrix is just the sum of the two others. Therefore, in the multi-view
architecture used here we just have two relation matrices (Figure 5.1.).

4http://www.imdb.com/interfaces/
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Table 1: Description of the seven databases. The Links column gives the num-
ber of relations occurring in the [Documents/Documents] matrices.

Dataset Movies Keywords Actors Clusters
IMDb 617 1878 1398 17

Dataset Documents Words Links Clusters
Cora 2708 1433 5429 7

Citeseer 3312 3703 4732 6
Cornell 195 1703 569 5
Texas 187 1703 578 5

Washington 230 1703 783 5
Winconsin 265 1703 938 5

More precisely, we used the Cora and CiteSeer dataset (Bickel & Scheffer,
2005; Drost et al., 2006; Sen et al., 2008) and four datasets coming from the
WebKB5 describing the pages of four universities (Cornell, Texas, Washing-
ton and Wisconsin), classified in five classes (student, project, staff, course,
faculty). On the basis of these seven benchmarks, we compared our multi-
view architecture based on χ-Sim with:

• Cosine, LSA (Deerwester et al., 1990), SNOS (Liu et al., 2004), CTK
(Yen et al., 2009) and χ-Simk

p (Hussain et al., 2010) that are five clas-
sical similarity or co-similarity measures;

• ITCC (Dhillon et al., 2003) a well-known co-clustering system;

• MVKM (Drost et al., 2006) which is an adaptation of the k-means clus-
tering algorithm to the multi-view context.

Test methodology. For the similarity measures : Cosine, LSA, SNOS, CTK
and χ-Sim, the clusters has been generated by an Agglomerative Hierarchical
Clustering (AHC) method on the similarity matrices along with Ward’s link-
age. Then, we cut the clustering tree at the level corresponding to the num-
ber of document clusters we are waiting for (17 for the dataset IMDb, etc).
We used the classical micro-averaged precision (Pr) (Dhillon et al., 2003)
for comparing the accuracy of the document clustering for which the higher
value, the better performance: value 100% representing a perfect correlation

5http://www.cs.umd.edu/projects/linqs/projects/lbc/
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between the learned and known clusters. For MVKM, as we don’t have a
running implementation, we directly quote the best values for the CiteSeer
dataset from Drost et al. (2006).

It is worth noticing that many of the these methods have some setting pa-
rameters. Thus, in order to keep a fair comparison, we sought for the better
values for these parameters either by testing several values and reporting the
best precision and/or by using the values recommended by the authors.

Table 2: Results of the experiments performed on the 7 dataset. The best re-
sults obtained for each dataset is written in bold

Dataset Single-view algorithms Multi-view approachView Best Pr Second Pr
Movie Key+Act CTK 33.2% χ-Sim 30.6% 34.7%
Cora Citation χ-Sim 63.4% LSA 49.8% 69.7%

Citeseer Content χ-Sim 60.8% ITCC 46.8% 63.5%
Cornell Content χ-Sim 63.1% LSA 57.9% 69.2%
Texas Content χ-Sim 72.2% LSA 66.3% 61.5%

Washington Content LSA 65.2% χ-Sim 63.5% 61.7%
Wisconsin Content χ-Sim 67.5% LSA 60.4% 67.5%

Table 2 reports the results obtained by the different clustering methods. We
tested every mono-view algorithms on all the seven datasets, however, in order
to easy the reading of the results we just report for each dataset: the name
of the view providing the best result and the precision of the best and second
methods on this view. As we can see, the multi-view architecture, described in
Sect. 4., obtains the best micro-averaged precision in all the datasets but two :
Texas (best: χ-Sim) and Washington (best: LSA). We are investing the reason
why our algorithm partially fails on these two datasets. But, in many cases
this architecture which can be seen as a generalization of the χ-Sim method,
is better that this one. Moreover, we observe the multi-view architecture is far
less sensible to the value of the pruning parameter, providing a more robust
approach.

Finally, we compare (table 3) our architecture with MVKM (Drost et al.,
2006). As the authors provided a measure of entropy of their resulting clus-
tering, we simply quote their best result. The lower the entropy is, the better
the clustering, as it measure disagreement between the known clusters, and
the learnt one. Here too, our approach achieves better results that MVKM.
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Table 3: Comparison between MVKM, χ-Simk
p and our architecture.

CiteSeer MVKM χ-Simk
p Multi-view arch.

Entropy 1.60 1.27 1.07

5.2. Evaluation of the splitting approach

Here, we analyze the performance of our multi-view architecture when a re-
lational matrix is splitted into a collection of smaller matrices. As explained
in Section 4.3., with such approach, we can process larger datasets with the
same running time and a smaller memory footprint.

For this test we use the classical NG20 dataset consisting of approximately
20,000 newsgroup articles collected from 20 different Usenet groups. We
create subsets of NG20 named M2, M5 and M10 (Dhillon et al., 2003), as
well as the subsets NG1, NG2, and NG3 (Long et al., 2006). Details about
the content of these subsets are given in Table 4.

Table 4: Description of the subsets of the NG20 dataset used.
Dataset Newsgroups included Clusters Docs.

M2 talk.politics.mideast, talk.politics.misc 2 500
M5 comp.graphics, rec.motorcycles, rec.sport.baseball, sci.space, talk.politics.mideast 5 500
M10 alt.atheism, comp.sys.mac.hardware, misc.forsale, rec.autos, rec.sport.hockey,

sci.crypt, sci.electronics, sci.med, sci.space, talk.politics.gun
10 500

NG1 rec.sports.baseball, rec.sports.hockey 2 400
NG2 comp.os.ms-windows.misc, comp.windows.x, rec.motorcycles, sci.crypt, sci.space 5 1000
NG3 comp.os.ms-windows.misc, comp.windows.x, misc.forsale, rec.motorcycles,

sci.crypt, sci.space, talk.politics.mideast, talk.religion.misc
8 1600

The results of our experiment are presented in Table 5, two configurations
being tested: in the first one, we generate three datasets of 1, 2 and 4 matrices,
each matrix containing 500 different words; in the second one, the matrices
contain 1000 different words. The words have been selected by running k-
medoids to get the most representative ones. It is important to emphasize that
each configuration needs the same time to run for a parallelized version of our
multi-view architecture, independently of the number of matrices.

For the simpler dataset (M2, NG1), the better results are obtained when
there is only one matrix. This result can be explained by the fact that smaller
dataset contains less different words, thus the added words have a high prob-
ability to be not relevant. When the dataset becomes bigger (M5, NG2, NG3)
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the datasets containing several views achieve the best results.

Table 5: Results of the splitting approach

Dataset M2 M5 M10 NG1 NG2 NG3
Multi-view (1×500) 74.5 73.8 50.7 78.2 64.2 50.9
Multi-view (2×500) 71.0 74.6 47.4 62.9 66.8 60.9
Multi-view (4×500) 65.3 75.6 46.3 54.6 68.1 59.5
Multi-view(1×1000) 74.5 73.8 50.7 80.9 68.0 58.2
Multi-view (2×1000) 71.9 76.9 49.9 64.9 71.8 63.3
Multi-view (4×1000) 64.3 78.4 49.1 57.3 68.9 63.1

6. Conclusion

In this article, we proposed a multi-view architecture to tackle the problem of
learning co-similarities from a collection of matrices describing interrelated
types of objects. Our approach is an extension of the χ-Simk

p co-similarity
(Bisson & Hussain, 2008) to the multi-view clustering problem.

This new architecture provides some interesting properties both in term
of convergence and scalability and it allows an simple parallelization of the
processes. The experiments shown this method outperform in several tests the
classical approaches dealing with one matrix at a time.
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