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Abstract

We present a methodology for learning spline-based

probabilistic models for sets of contours, proposing a

new Monte Carlo variant of the EM algorithm to esti-

mate the parameters of a family of distributions defined

over the set of spline functions (with fixed complexity).

The proposed model effectively captures the major mor-

phological properties of the observed set of contours

as well as its variability, as the simulation results pre-

sented demonstrate.

1. Introduction

In many situations it is important to be able to find

compact representations of the collective morphologi-

cal properties of a set of objects. In this paper we ad-

dress this problem, proposing a formal modeling frame-

work to address it, and presenting methods for auto-

matic identification of such models. The morpholog-

ical properties we consider are the shape of planar ob-

jects, mathematically described by simple closed curves

in the ambient 2D Euclidean space.

Most often, the goal is to capture the intrinsic proper-

ties of a given set of objects, independently of the vari-

ability induced by viewpoint. The seminal approach of

Kendall [8], that formally defines the “shape” of an ob-

ject as the associated class of equivalence with respect

to the action of basic groups of geometric operators,

provides an appropriate setting for these studies. One

can distinguish two distinct approaches to the defini-

tion of “shape spaces”: (i) the original discrete theory

of Kendall [8] and (ii) the more recent theory of contin-

uous closed curves presented in [9]. The discrete theory

admits the existence of recognizable landmarks on the

objects – it thus is intrinsically parsimonious – and the

definition of probability distributions can be approached

by using the exponential maps, see [12]. It can lead to

unstable results when landmark definition is done auto-

matically. The continuous theory provides a more fun-

damental approach, but leads to shape spaces of infinite

dimension. It presents two main drawbacks: it is sub-

ject to numerical instabilities, and, more fundamentally,

it is still unclear how probability distributions can be

defined in them on a convenient manner.

We try in our work to combine the advantages of

both approaches, basing our work on spline represen-

tations of (closed planar) curves: piecewise continu-

ous polynomials defined by sets of knots and control

points. Our shapes are thus continuous, benefiting from

the plasticity and compactness of spline representations.

To model the collective properties of a set of shapes, we

propose a generative model for the observed curves that

relies on the definition of a parametric family of proba-

bility distributions over the spline parameters.

In the context of curve modeling, splines have been

widely used and studied [11, 10, 5]. In particular, in [6],

the authors address the problem of fitting a fixed knot

spline whose complexity is automatically chosen using

the MDL principle to the contour between two distinct

regions in a digital image. In [2] we addressed the ba-

sic problem of fitting free-knots splines of varying com-

plexity to a single observed curve, and we concentrate

here on the estimation of probability distributions over

the spline parameter space.

We start by presenting spline functions and associ-

ated spaces in section 2. We then define a paramet-

ric model on the space of spline parameters, section

3, and use it to define (section 4) the model that will

be used for Maximum Likelihood using a variant of the

Expectation-Maximization (EM) algorithm in section 5.

Finally, section 6 presents simulation results of the pro-

posed algorithm, and section 7 summarizes our contri-

butions.

2. Model space: Free Knot Splines

We remember in this section the basic definition of

splines. The interested reader is referred to [4] for a full

presentation.

A spline of order m over the interval I = [τ1 τl+1] is

a piecewise polynomial (pp) function of degree m − 1

with l + 1 breakpoints τ = (τi)
l+1
i=1:

f(t) = Pi(t), τi ≤ t < τi+1 , i = 1 · · · l . (1)



Each Pi(t), i = 1 · · · l is a polynomial of degree m − 1
(we fix m = 4, cubic splines) on [τi, τi+1]. Closed

curves are conveniently modeled considering an infi-

nite periodic extension of I (we assume a normalized

representation with I = [0, 1]), obtained by setting

f(t) = f(t + k), k ∈ N. To handle invariance with

respect to the definition of origin, we assume that the

curve is parametrized such that its origin coincides with

the limit of one polynomial piece, i.e., τi = 0 and that

the polynomial piece of largest support is the first one.

It can easily been checked that Πτ , the set of all pp

functions f(t) of order m with breaks τ , inherits the

vector space structure of polynomials. The knot vector

ξ (of dimension k + m, k ≥ l) simultaneously codes

information about the breakpoints τi and the continuity

conditions enforced at each of them. The set of spline

functions of order m with knots at ξ, Sξ ⊂ Πτ , is still

a vector space. A special basis of this space, the B-

spline functions {bj(t; ξ)}k
j=1, is a common choice for

spline representation, since it satisfies a set of recursive

relations that can be exploited for computational pur-

poses. Thus, if c(t) ∈ Sξ, it exists a set of coefficients

βk = {βj}
k
j=1 such that

c(t) =
k

∑

j=1

βj bj(t; ξ) = b(t; ξ)T βk , (2)

where we introduced the k-dimensional vector function

b(t; ξ) that groups the k B-spline functions. Since ξ is

ordered, its elements can be written

ξj =

j−1
∑

i=1

∆i, j > 1 ∆i = ξi+1 − ξi, ξ1 = 0 ,

where 0 ≤ ∆j ≤ 1. Vector ∆ = [∆1 . . . ∆k] belongs

thus to the (k − 1)-dimensional simplex Mk. We will

consider parametrization of the splines by ∆ instead of

direct use of ξ. We will stress this using the alternative

notation b(t;∆) in (2).

Set Sk of the (cubic) splines with fixed number of

knots k
S

k =
{

Sξ; ξ = (ξi)
k

i=1

}

,

plays a central role in our control modeling approach,

and in the following section we define a parametric

probability distribution over its parameter space Θk:

w = (β,∆) ∈ Θk = C
k ×Mk , (3)

the product of the coefficient space (the k-dimensional

complex space Ck – considering the complex represen-

tation of planar curves) and of the inter-knot spacings

space Mk.

3. Parametric Probability Model

We parametrize distributions over Θk by

γ =
[

µ0, σ
2, α

]

with the following factored structure

pµ0,σ2,α(β,∆) = pµ0,σ2(β|∆)pα(∆) , (4)

i.e., with dependency structure

µ0, σ
2

α ∆

β

The first factor in (4) is the normal distribution

over Ck with mean µ0 ∈ Ck and information matrix

Σ(∆)−1 = 1
σ2

∫

I
b(t; ξ)bT (t;∆) dt, (σ2 > 0) propor-

tional to the Gramian matrix of the vector of B-spline

basis functions b(t,∆) with inter-knot vector ∆. Vector

∆ is drawn from a Dirichlet distribution [7] with param-

eter α ∈ R+k:

∆ ∼ D(∆|α) =
1

B(α)

k
∏

j=1

(∆j)
αj−1

, (5)

where B(α) =
∏k

j=1 Γ(αj)

Γ(
∑

k
j=1 αj)

, and Γ(·) is the Gamma

function. This distribution has a single mode at
(

α1

ᾱ
, α2

ᾱ
, · · · , αk

ᾱ

)

, where ᾱ =
∑k

j=1 αj , its dispersion

being determined by ᾱ.

The parameter space of the family (4) of distributions

over Θk is thus

G = C
k ×R

+
∗ ×R

+k . (6)

In the following section we present a generative

model for the observed set of contours that is based on

this family.

4. Generative model

We now address the problem of learning the value

of γ that best fits the set of N observed contours Z =
{Z(i)}

N
i=1, Z(i) = {z(i)(ti,n), n = 1, . . . , N(i)}. Our

observation assumes that each observed contour is a

noisy sampled version of a spline curve with complexity

(number of knots) k:

z(i)(ti,n) = c(i)(ti,n) + ǫ(i)(ti,n) = B(i)(∆(i))β(i) + ǫ(ti,n),

where B(i)(∆(i)) is the design matrix of generic ele-

ment
[

B(i)(∆(i))
]

pq
= bq(ti,p;∆(i)). We assume that

ǫ(ti,n)
iid
∼ N

(

0, σ2
)

are statistically independent of the parameters w of the

spline curve, which are iid samples from (4)

{∆(i)}
N
i=1

iid
∼ D(∆|α)

{β(i)|∆(i)}
N
i=1

iid
∼ N

(

µ0,Σ(∆(i))
)

.

Assumptions above allow us to write the conditional

density of the observations Z given γ:

p(Z|γ) =
∏

i

p(Z(i)|γ)

p(Z(i)|γ) =

∫

p(Z(i), w(i)|γ)dw .



It can be shown that the joint density

p(Z(i), w(i)|γ) = p(Z(i)|w(i), γ)p(w(i)|γ)

belongs to the (curved) exponential family and,

p(Z(i), w(i)|γ) = h(Z(i), w(i))e
−Ψ(γ)+〈S(Z(i),w(i)),Φ(γ)〉.

(7)
See [1] for the detailed definitions of h(·, ·), Ψ(·), Φ(·)
and of the sufficient statistic S(·, ·).

5. Model identification

We now address estimation of the parameter γ using

the Maximum Likelihood criterion:

γ̂ = arg max
γ∈G

p(Z|γ), γ =
(

µ0, σ
2, α

)

. (8)

Note that the spline parameters w(i) appear in the ob-

servation model as hidden variables with respect to the

estimation of γ.We estimate γ using a novel version of

the EM algorithm, which is a modification of the On-

line EM algorithm, proposed in [3] for estimation in ex-

ponential families. We name this new algorithm MC

(Monte Carlo) Online EM.

As Online EM, our algorithm processes the observed

set of curves sequentially, producing an updated value

of γ̂ at each iteration, and, as the original EM algo-

rithm, each iteration is composed of two basic steps,

Expectation and Maximization. Online EM computes,

iteratively, stochastic approximations of the complete

(batch) Estimation step.

Moreover, for problems where the complete data

belongs to the exponential family, as it is our

case, this recursive update only requires computa-

tion of the expected value with respect to w =
(β,∆) of the sufficient statistic: s̄(Z(i), γ̂(i−1)) =

Ew

[

S(Z,w)|Z(i), γ̂(i−1)

]

. In our case the integration

over β can be done analytically (see [1] for details) lead-

ing to an expression of the general form

s̄(Z(i), γ̂(i−1)) =

∫

Mk

g (∆) q
(

∆|Z(i), γ̂(i−1)

)

d∆ (9)

where q
(

∆|Z(i), γ̂(i−1)

)

is a tilted version of

p(∆|γ(i−1)). The integral over ∆ in the above

expression is untractable, and we resort to Monte Carlo

to approximate it:

s̄(Z(i), γ̂(i−1)) ≈
1

M i

Mi

∑

j=1

g
(

∆j

(i)

)

, (10)

where
{

∆j

(i)

}Mi

j=1
are M i samples of the normalized

version of q(∆|Z(i), γ̂(i−1)), obtained using a Metropo-

lis Hasting (MH) sampler. The value of (10) is then

used to update the log-likelihood

ℓ(γ)(i) = −Ψ(γ) +
〈

ŝ(i),Φ(γ)
〉

. (11)

In this equation

ŝ(i) = ŝ(i−1) + ηi

(

s̄(Z(i), γ̂(i−1)) − ŝ(i−1)

)

, (12)

with ηi = η0i
−κ, κ ∈]1/2, 1[, η0 ∈ [0, 1], following [3].

Maximization of ℓ(·)(i), (11), can be split into two

independent maximizations, over α, and over the pa-

rameters (µ0, σ
2) (see [1] for details). We use numeri-

cal optimization methods to solve each problem.

6. Results

In this section, we show results obtained on curves

sampled from model (4) for cubic splines k = 12
knots. Figure 1 shows 20 of the 200 simulated curves.

The red crosses show µ0, σ2 = 2.3 10−3, and α =
[3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27].
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Figure 1. Subset of the simulated curves .
Results obtained with 3 different proposals for the

MH sampler are shown in figure 2. We can see that

the estimated µ0 (far left) are similar and close to its

true value. While no significant differences can be de-

tected on the estimates of the Dirichlet mode α
ᾱ

, which

are close to the true value for all the proposals, α is bet-

ter estimated with one of them (random changes of a

knot in its neighborhood, according to a triangular dis-

tribution), in magenta, while with the other proposals

the Markov chain is not well mixed (second plot). The

noise covariance σ2 shows a small bias in all cases, ei-

ther positive or negative for these examples (right plot).

The locality of the EM algorithm makes it sensi-

tive to initialization. Figure 3 show results of Monte

Carlo runs of MCOnlineEM with different initializa-

tions, which clearly show that it can fail to identify the

correct mode of the likelihood.

Finally, Figure 4 plots random samples of the mod-

els identified. The green curves (left) correspond to

a good initialization, while the magenta curves (right)

show samples from a model corresponding to a local

mode of the likelihood, showing that even if the overall

shape is consistent with the true model in both cases, the

variability of the local estimate does not reflect that of

the true model (higher σ2, wrong control points mode

and dispersion).

7. Conclusions
In this paper, we propose a methodology to learn

models of sets of planar closed curves. It is a proba-
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Figure 2. Real (red) and estimated values of, left to right, µ0, α (vector index in abscissa), α
ᾱ

and

σ2 (iterations in abscissa), with different proposals in magenta (P1), green (P2 ) and blue (P3).

−4 −3 −2 −1 0 1 2 3 4 5
−6

−4

−2

0

2

4

6

8

0 2 4 6 8 10 12
0

5

10

15

20

25

30

0 2 4 6 8 10 12
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Figure 3. Parameters estimated with different initializations (magenta, green and blue): from

left to right, µ0, α and α
ᾱ

. Real model is in red.
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Figure 4. Simulated curves from the model estimated with a good estimation (left, in green)

and with a bad estimation (right, in magenta).

bilistic approach, relying on the definition of a paramet-

ric family of distributions in the set of spline param-

eters and a new variant (Monte Carlo version) of the

Online EM algorithm proposed in [3] to perform Max-

imum Likelihood estimation in this model. We present

simulation results that illustrate the behavior of the al-

gorithm, in particular the problems of choice of the im-

portance sampling scheme used in the MC approxima-

tion and its sensitivity with respect to initialization. Our

results show that even when the EM is trapped in a local

mode the most important morphological characteristics

of the set of contours are still captured, while its vari-

ability structure can be poor.
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